메뉴 건너뛰기




Volumn 8, Issue 8, 2008, Pages 1487-1494

River flow forecasting using neural networks and auto-calibrated NAM model with shuffled complex evolution

Author keywords

Hydrologic model; Kashkan river; Multi layer perceptron; Radial basis function; River flow forecasting; Shuffled complex evolution

Indexed keywords

CALIBRATION; COMPLEX NETWORKS; DEEP NEURAL NETWORKS; EVOLUTIONARY ALGORITHMS; FLOW OF WATER; FORECASTING; FUNCTIONS; NETWORK LAYERS; NEURAL NETWORKS; RIVERS; STREAM FLOW;

EID: 42149150046     PISSN: 18125654     EISSN: 18125662     Source Type: Journal    
DOI: 10.3923/jas.2008.1487.1494     Document Type: Article
Times cited : (9)

References (40)
  • 1
    • 42149110239 scopus 로고    scopus 로고
    • Runoff modeling with genetic programming and artificial neural networks
    • D2K TR 0401-1
    • Babovic, V. and V. Bojkow, 2001. Runoff modeling with genetic programming and artificial neural networks. D2K Technical Report D2K TR 0401-1.
    • (2001) D2K Technical Report
    • Babovic, V.1    Bojkow, V.2
  • 2
    • 0032688155 scopus 로고    scopus 로고
    • River flow forecasting with a neural network model
    • Campolo, M., P. Andreussi and A. Soldati, 1999. River flow forecasting with a neural network model. Water Resour. Res., 35: 1191-1197.
    • (1999) Water Resour. Res , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 3
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., A. Soldati and P. Andreussi, 2003. Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J., 48: 381-398.
    • (2003) Hydrol. Sci. J , vol.48 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 4
    • 0035340711 scopus 로고    scopus 로고
    • A counter propagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang, F. and Y. Chen, 2001. A counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol., 245: 153-164.
    • (2001) J. Hydrol , vol.245 , pp. 153-164
    • Chang, F.1    Chen, Y.2
  • 5
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze river
    • Chau, K.W., C.L. Wu and Y.S. Li, 2005. Comparison of several flood forecasting models in Yangtze river. J. Hydrol. Eng., 10: 485-491.
    • (2005) J. Hydrol. Eng , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 6
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of shing Mun river
    • Chau, K.W., 2006. Particle swarm optimization training algorithm for ANNs in stage prediction of shing Mun river. J. Hydrol., 329: 363-367.
    • (2006) J. Hydrol , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, C.W. and R. Wilby, 1998. An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J., 43: 47-66.
    • (1998) Hydrol. Sci. J , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 8
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • Dawson, C.W., R.J. Abrahart, A.Y. Shamseldin and R.L. Wilby, 2006. Flood estimation at ungauged sites using artificial neural networks. J. Hydrol., 319: 391-409.
    • (2006) J. Hydrol , vol.319 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 9
    • 0032650301 scopus 로고    scopus 로고
    • On the encapsulation of numerical-hydraulic models in artificial neural networks
    • Dibike, Y.B., D.P. Solomatine and M.B. Abbot, 1999. On the encapsulation of numerical-hydraulic models in artificial neural networks. J. Hydraul. Res., 37: 147-161.
    • (1999) J. Hydraul. Res , vol.37 , pp. 147-161
    • Dibike, Y.B.1    Solomatine, D.P.2    Abbot, M.B.3
  • 10
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q., S. Sorooshian and H.V. Gupta, 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28: 1015-1031.
    • (1992) Water Resour. Res , vol.28 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, H.V.3
  • 11
    • 0028449781 scopus 로고
    • Optimal use of the SCE-UA global optimization method for calibrating watershed models
    • Duan, Q., S. Sorooshian and H.V. Gupta, 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158: 265-284.
    • (1994) J. Hydrol , vol.158 , pp. 265-284
    • Duan, Q.1    Sorooshian, S.2    Gupta, H.V.3
  • 13
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French, M.N., W.F. Krajewski and R.R. Cuykendall, 1992. Rainfall forecasting in space and time using a neural network. J. Hydrol., 137: 1-31.
    • (1992) J. Hydrol , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 14
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchment with artificial neural network
    • Gautam, M.R., K. Watanabe and H. Saegusa, 2000. Runoff analysis in humid forest catchment with artificial neural network. J. Hydrol., 235: 117-136.
    • (2000) J. Hydrol , vol.235 , pp. 117-136
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 16
    • 0023566098 scopus 로고
    • Kolmogorov's Mapping Neural Network Existence Theorem
    • San Diago, CA
    • Hecht-Nielson, R., 1987. Kolmogorov's Mapping Neural Network Existence Theorem. 1st IEEE ICNN, Vol. 3. San Diago, CA.
    • (1987) 1st IEEE ICNN , vol.3
    • Hecht-Nielson, R.1
  • 18
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K.L., H.V. Gupta and S. Sorooshian, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res., 31: 2517-2530.
    • (1995) Water Resour. Res , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 19
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalisation beyond the calibration range
    • Imrie, C.E., S. Durucan and A. Korre, 2000. River flow prediction using artificial neural networks: Generalisation beyond the calibration range. J. Hydrol., 233: 138-153.
    • (2000) J. Hydrol , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 20
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., K.P. Sudheer and S. Srinivasulu, 2004. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Process, 18: 571-581.
    • (2004) Hydrol. Process , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 22
    • 0029748915 scopus 로고    scopus 로고
    • A neural network model of rainfall-runoff using radial basis functions
    • Mason, J.C., R.K. Price and Tem'me, 1996. A neural network model of rainfall-runoff using radial basis functions. J. Hydraul. Res., 34: 537-548.
    • (1996) J. Hydraul. Res , vol.34 , pp. 537-548
    • Mason, J.C.1    Price, R.K.2    Tem'me3
  • 23
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A.W. and M.J. Hall, 1996. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J., 41: 399-417.
    • (1996) Hydrol. Sci. J , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 24
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part I. A discussion of principles
    • Nash, J.E. and J.V. Sutcliffe, 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. J. Hydrol., 10: 282-290.
    • (1970) J. Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 25
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder, J.A. and R. Mead, 1965. A simplex method for function minimization. Comput. J., 7: 308-313.
    • (1965) Comput. J , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 26
    • 0015573240 scopus 로고
    • Numerical simulation of the rainfall runoff process on a daily basis
    • Nielsen, S.A. and E. Hansen, 1973. Numerical simulation of the rainfall runoff process on a daily basis. Nordic. Hydrol., 4: 171-190.
    • (1973) Nordic. Hydrol , vol.4 , pp. 171-190
    • Nielsen, S.A.1    Hansen, E.2
  • 27
    • 33845975322 scopus 로고    scopus 로고
    • A nonlinear perturbation model based on artificial neural network
    • Pang, B., S. Guo, L. Xiong and C. Li, 2007. A nonlinear perturbation model based on artificial neural network. J. Hydrol., 333: 504-516.
    • (2007) J. Hydrol , vol.333 , pp. 504-516
    • Pang, B.1    Guo, S.2    Xiong, L.3    Li, C.4
  • 28
    • 0347135926 scopus 로고    scopus 로고
    • Modelling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurka, M.P., U.C. Kothyari and U.C. Chaube, 2004. Modelling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol., 285: 96-113.
    • (2004) J. Hydrol , vol.285 , pp. 96-113
    • Rajurka, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 29
    • 0003356419 scopus 로고
    • Parallel Recognition in Modern Computers
    • and the PDP Research Group, Foundations, MIT Press/Bradford Books, Cambridge Mass
    • Rumelhart, D.E., J.L. McClelland and the PDP Research Group, 1986. Parallel Recognition in Modern Computers. In Processing: Explorations in the Microstructure of Cognition. Vol 1. Foundations, MIT Press/Bradford Books, Cambridge Mass.
    • (1986) Processing: Explorations in the Microstructure of Cognition , vol.1
    • Rumelhart, D.E.1    McClelland, J.L.2
  • 30
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin, A.Y., 1997. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol., 199: 272-294.
    • (1997) J. Hydrol , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 31
    • 0035701248 scopus 로고    scopus 로고
    • A nonlinear neural network technique for updating river flow forecasts
    • Shamseldin, A.Y. and H.M. O'Connor, 2001. A nonlinear neural network technique for updating river flow forecasts. Hydrol. Earth Syst. Sci., 5: 577-597.
    • (2001) Hydrol. Earth Syst. Sci , vol.5 , pp. 577-597
    • Shamseldin, A.Y.1    O'Connor, H.M.2
  • 32
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., A.W. Jayawardena and T.M.K.G. Fernando, 2002. River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol., 265: 225-245.
    • (2002) J. Hydrol , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 33
    • 0029416249 scopus 로고
    • Neural network models of the rainfall-runoff process
    • Smith J. and R.N. Eli, 1995. Neural network models of the rainfall-runoff process. J. Water Res. Pl.-ASCE., 121: 499-508.
    • (1995) J. Water Res. Pl.-ASCE , vol.121 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 34
    • 0027503733 scopus 로고
    • Calibration of rainfall-runoff models: Application of global optimization to the sacramento soil moisture accounting model
    • Sorooshian, S., Q. Duan and H.V. Gupta, 1993. Calibration of rainfall-runoff models: Application of global optimization to the sacramento soil moisture accounting model. Water Resour. Res., 29: 1185-1194.
    • (1993) Water Resour. Res , vol.29 , pp. 1185-1194
    • Sorooshian, S.1    Duan, Q.2    Gupta, H.V.3
  • 35
    • 0026266630 scopus 로고
    • The genetic algorithms and its application to calibrating conceptual rainfall-runoff models
    • Wang, Q.J., 1991. The genetic algorithms and its application to calibrating conceptual rainfall-runoff models. Water Resour. Res., 27: 2467-2471.
    • (1991) Water Resour. Res , vol.27 , pp. 2467-2471
    • Wang, Q.J.1
  • 37
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R.L., R.J. Abrahart and C.W. Dawson, 2003. Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J., 48: 163-181.
    • (2003) Hydrol. Sci. J , vol.48 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 38
    • 18844480083 scopus 로고    scopus 로고
    • Xiong, L. and K.M. O'Connor, 2002. Comparison of four updating models for real-time river flow forecasting. Hydrol. Sci. J., 47: 621-639.
    • Xiong, L. and K.M. O'Connor, 2002. Comparison of four updating models for real-time river flow forecasting. Hydrol. Sci. J., 47: 621-639.
  • 39
    • 5044234787 scopus 로고    scopus 로고
    • Comparison of three updating schemes using artificial neural network in flow forecasting
    • Xiong, L., K.M. O'Connor and S.L. Guo, 2004. Comparison of three updating schemes using artificial neural network in flow forecasting. Hydrol. Earth Syst. Sci., 8: 247-255.
    • (2004) Hydrol. Earth Syst. Sci , vol.8 , pp. 247-255
    • Xiong, L.1    O'Connor, K.M.2    Guo, S.L.3
  • 40
    • 0000413739 scopus 로고
    • Application of Neural Networks to Runoff Prediction
    • Engineering, Hipel, K.W. et al, Eds, Kluwer, Dordrecht, The Netherlands, pp
    • Zhu, M.L., M. Fujita and N. Hashimoto, 1994. Application of Neural Networks to Runoff Prediction. In: Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Hipel, K.W. et al. (Eds.). Kluwer, Dordrecht, The Netherlands, pp: 205-216.
    • (1994) Stochastic and Statistical Methods in Hydrology and Environmental , pp. 205-216
    • Zhu, M.L.1    Fujita, M.2    Hashimoto, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.