메뉴 건너뛰기




Volumn 11, Issue 1, 2007, Pages 29-47

Statistical supports for mining sequential patterns and improving the incremental update process on data streams

Author keywords

[No Author keywords available]

Indexed keywords


EID: 41849109500     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2007-11103     Document Type: Article
Times cited : (11)

References (33)
  • 3
    • 12244291514 scopus 로고    scopus 로고
    • Incspan: Incremental Mining of Sequential Patterns in Large Database
    • X. Cheng, X. Yan and J. Han, Incspan: Incremental Mining of Sequential Patterns in Large Database, In Proc. of KDD'04, 2004.
    • (2004) Proc. of KDD'04
    • Cheng, X.1    Yan, X.2    Han, J.3
  • 4
    • 0029733589 scopus 로고    scopus 로고
    • Maintenance of Discovered Association Rules in Large Databases: An Incremental Update Technique
    • D. Cheung, J. Han, V. Ng and C. Wong, Maintenance of Discovered Association Rules in Large Databases: an Incremental Update Technique, In Proc. of ICDE'93, 1996.
    • (1996) Proc. of ICDE'93
    • Cheung, D.1    Han, J.2    Ng, V.3    Wong, C.4
  • 5
    • 19544377965 scopus 로고    scopus 로고
    • Moment: Maintaining Closed Frequent Itemsets over a Stream Sliding Window
    • Y. Chi, H. Wang, P.S. Yu and R.R. Muntz, Moment: Maintaining Closed Frequent Itemsets over a Stream Sliding Window, In Proc. of ICDM'04, 2004.
    • (2004) Proc. of ICDM'04
    • Chi, Y.1    Wang, H.2    Yu, P.S.3    Muntz, R.R.4
  • 8
    • 0036102015 scopus 로고    scopus 로고
    • Adaptive Sampling Methods for Scaling up Knowledge Discovery Algorithms
    • C. Domingo, R. Gavaldà and O. Watanabe, Adaptive Sampling Methods for Scaling up Knowledge Discovery Algorithms, Proc. of DMKD'02, 6, 2002.
    • (2002) Proc. of DMKD'02 , vol.6
    • Domingo, C.1    Gavaldà, R.2    Watanabe, O.3
  • 10
    • 10044238664 scopus 로고    scopus 로고
    • Mining Frequent Patterns in Data Streams at Multiple Time Granularities
    • MIT Press
    • G. Giannella, J. Han, J. Pei, X. Yan and P. Yu, Mining Frequent Patterns in Data Streams at Multiple Time Granularities, In Next Generation Data Mining, MIT Press, 2003.
    • (2003) Next Generation Data Mining
    • Giannella, G.1    Han, J.2    Pei, J.3    Yan, X.4    Yu, P.5
  • 12
    • 2442617843 scopus 로고    scopus 로고
    • Issues in Data Stream Management, (Vol. 2), ACM
    • L. Golab and M.T. Ozsu, Issues in Data Stream Management, (Vol. 2), ACM SIGMOD Records, 2003, 5-14.
    • (2003) SIGMOD Records , pp. 5-14
    • Golab, L.1    Ozsu, M.T.2
  • 15
    • 8644256210 scopus 로고    scopus 로고
    • Dynamically Maintaining Frequent Items Over a Data Stream
    • ACM Press
    • C. Jin, W. Qian, C. Sha, J.-X. Yu and A. Zhou, Dynamically Maintaining Frequent Items Over a Data Stream, In Proc. of CIKM'03. ACM Press, 2003.
    • (2003) Proc. of CIKM'03
    • Jin, C.1    Qian, W.2    Sha, C.3    Yu, J.-X.4    Zhou, A.5
  • 16
    • 0003269205 scopus 로고    scopus 로고
    • A Fast, Bottom-up Decision Tree Pruning Algorithm with Near-Optimal Generalization
    • M.J. Kearns and Y. Mansour, A Fast, Bottom-up Decision Tree Pruning Algorithm with Near-Optimal Generalization, In Proc. of ICML'98, 1998.
    • (1998) Proc. of ICML'98
    • Kearns, M.J.1    Mansour, Y.2
  • 18
    • 0346354497 scopus 로고    scopus 로고
    • Approximate Frequency Counts Over Data Streams
    • G. Manku and R. Motwani, Approximate Frequency Counts Over Data Streams, In Proc. of VLDB'02, 2002.
    • (2002) Proc. of VLDB'02
    • Manku, G.1    Motwani, R.2
  • 21
    • 0033281518 scopus 로고    scopus 로고
    • Some PAC-Bayesian Theorems, (Vol. 37)
    • D. McAllester, Some PAC-Bayesian Theorems, (Vol. 37), Machine Learning, 1999, 355-363.
    • (1999) Machine Learning , pp. 355-363
    • McAllester, D.1
  • 24
    • 0141719772 scopus 로고    scopus 로고
    • T. Scheffer and S. Wrobel, Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling, (3), Proc. of JMLR'02, 2002.
    • T. Scheffer and S. Wrobel, Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling, (Vol. 3), Proc. of JMLR'02, 2002.
  • 26
    • 85012188661 scopus 로고    scopus 로고
    • A Regression-Based Temporal Patterns Mining Schema for Data Streams
    • W.-G. Teng, M.-S. Chen and P.S. Yu, A Regression-Based Temporal Patterns Mining Schema for Data Streams, In Proc. of VLDB'03, 2003.
    • (2003) Proc. of VLDB'03
    • Teng, W.-G.1    Chen, M.-S.2    Yu, P.S.3
  • 27
    • 0002663969 scopus 로고    scopus 로고
    • Sampling Large Databases for Association Rules
    • H. Toivonen, Sampling Large Databases for Association Rules, In Proc. of VLDB'96, 1996.
    • (1996) Proc. of VLDB'96
    • Toivonen, H.1
  • 30
    • 41849098235 scopus 로고    scopus 로고
    • Mining Concept-Drifting Data Streams with Ensemble Classifiers
    • D. Wettschereck and D. Aha, Mining Concept-Drifting Data Streams with Ensemble Classifiers, In Proc. of KDD'03, 2003.
    • (2003) Proc. of KDD'03
    • Wettschereck, D.1    Aha, D.2
  • 32
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: An Efficient Algorithm for Mining Frequent Sequences
    • M.J. Zaki, SPADE: An Efficient Algorithm for Mining Frequent Sequences, Machine Learning Journal, 42, 2001.
    • (2001) Machine Learning Journal , vol.42
    • Zaki, M.J.1
  • 33
    • 34147103291 scopus 로고    scopus 로고
    • The Algorithms of Updating Sequential Patterns
    • Q. Zheng, K. Ksu, S. Ma and W. Lv, The Algorithms of Updating Sequential Patterns, In Proc. of ICDM'02, 2002.
    • (2002) Proc. of ICDM'02
    • Zheng, Q.1    Ksu, K.2    Ma, S.3    Lv, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.