메뉴 건너뛰기




Volumn 8, Issue 3, 1996, Pages 461-489

A Smoothing Regularizer for Feedforward and Recurrent Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 2342475914     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/neco.1996.8.3.461     Document Type: Article
Times cited : (36)

References (43)
  • 1
  • 2
    • 0015430813 scopus 로고
    • Characteristics of random nets of analog neural-like elements. IEEE Trans
    • Amari, S. 1972. Characteristics of random nets of analog neural-like elements. IEEE Trans. Systems, Man Cybern. SMC-2, 643-653.
    • (1972) Systems, Man Cybern. , vol.SMC-2 , pp. 643-653
    • Amari, S.1
  • 3
    • 0027659357 scopus 로고
    • Curvature-driven smoothing: A learning algorithm for feed-forward networks
    • Bishop, C. 1993. Curvature-driven smoothing: A learning algorithm for feed-forward networks. IEEE Trans. Neural Networks 4(5), 882-884.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 882-884
    • Bishop, C.1
  • 4
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop, C. 1995. Training with noise is equivalent to Tikhonov regularization. Neural Comp. 7(1), 108-116.
    • (1995) Neural Comp. , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.1
  • 5
    • 0000494465 scopus 로고
    • Dynamic behavior of constrained back-propagation networks
    • D. Touretzky, ed. Morgan Kaufmann, San Mateo, CA
    • Chauvin, Y. 1990. Dynamic behavior of constrained back-propagation networks. In Advances in Neural Information Processing Systems 2, D. Touretzky, ed. pp. 642-649. Morgan Kaufmann, San Mateo, CA.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 642-649
    • Chauvin, Y.1
  • 6
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. 1990. Finding structure in time. Cog. Sci. 14, 179-211.
    • (1990) Cog. Sci. , vol.14 , pp. 179-211
    • Elman, J.1
  • 8
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E., and Doursat, R. 1992. Neural networks and the bias/variance dilemma. Neural Comp. 4(1), 1-58.
    • (1992) Neural Comp. , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 9
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, F., Jones, M., and Poggio, T. 1995. Regularization theory and neural networks architectures. Neural Comp. 7, 219-269.
    • (1995) Neural Comp. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 10
    • 0001390008 scopus 로고
    • On learning and energy-entropy dependence in recurrent and nonrecurrent signed networks
    • Grossberg, S. 1969. On learning and energy-entropy dependence in recurrent and nonrecurrent signed networks. J. Stat. Phys. 1, 319-350.
    • (1969) J. Stat. Phys. , vol.1 , pp. 319-350
    • Grossberg, S.1
  • 12
    • 0024909476 scopus 로고
    • Convergent activation dynamics in continuous time networks
    • Hirsch, M. 1989. Convergent activation dynamics in continuous time networks. Neural Networks 2(5), 331-349.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 331-349
    • Hirsch, M.1
  • 13
    • 84942487147 scopus 로고
    • Ridge regression: Applications to nonorthogonal problems
    • Hoerl, A., and Kennard, R. 1970a. Ridge regression: Applications to nonorthogonal problems. Technometrics 12, 69-82.
    • (1970) Technometrics , vol.12 , pp. 69-82
    • Hoerl, A.1    Kennard, R.2
  • 14
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A., and Kennard, R. 1970b. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.1    Kennard, R.2
  • 15
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield, J. 1984. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81, 3088-3092.
    • (1984) Proc. Natl. Acad. Sci. U.S.A. , vol.81 , pp. 3088-3092
    • Hopfield, J.1
  • 17
    • 0000535797 scopus 로고
    • A convergence result for learning in recurrent neural networks
    • Kuan, C., Hornik, K., and White, H. 1994. A convergence result for learning in recurrent neural networks. Neural Comp. 6(3), 420-440.
    • (1994) Neural Comp. , vol.6 , Issue.3 , pp. 420-440
    • Kuan, C.1    Hornik, K.2    White, H.3
  • 18
    • 0008847393 scopus 로고
    • From data distributions to regularization in invariant learning
    • Leen, T. 1995. From data distributions to regularization in invariant learning, Neural Comp. 7(5), 974-981.
    • (1995) Neural Comp. , vol.7 , Issue.5 , pp. 974-981
    • Leen, T.1
  • 19
    • 0001860703 scopus 로고
    • Fast pruning using principal components
    • J. Cowan, G. Tesauro, and J. Alspector, eds., Morgan Kaufmann, San Mateo, CA
    • Levin, A. U., Leen, T. K., and Moody, J. E. 1994. Fast pruning using principal components. In Advances in Neural Information Processing Systems 6, J. Cowan, G. Tesauro, and J. Alspector, eds., pp. 35-42. Morgan Kaufmann, San Mateo, CA.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 35-42
    • Levin, A.U.1    Leen, T.K.2    Moody, J.E.3
  • 20
    • 2342665376 scopus 로고
    • Dynamics of analog neural networks with time delay
    • D. Touretzky, ed., Morgan Kaufmann, San Mateo, CA
    • Marcus, C., and Westervelt, R. 1989. Dynamics of analog neural networks with time delay. In Advances in Neural Information Processing Systems 1, D. Touretzky, ed., Morgan Kaufmann, San Mateo, CA.
    • (1989) Advances in Neural Information Processing Systems 1
    • Marcus, C.1    Westervelt, R.2
  • 22
    • 0000513303 scopus 로고
    • Principled architecture selection for neural networks: Application to corporate bond rating prediction
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, eds., Morgan Kaufmann, San Mateo, CA
    • Moody, J. E., and Utans, J. 1992. Principled architecture selection for neural networks: Application to corporate bond rating prediction. In Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, eds., pp. 683-690. Morgan Kaufmann, San Mateo, CA.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 683-690
    • Moody, J.E.1    Utans, J.2
  • 23
    • 0242401012 scopus 로고
    • Networks with learned unit response functions
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, eds., Morgan Kaufmann, San Mateo, CA
    • Moody, J. E., and Yarvin, N. 1992. Networks with learned unit response functions. In Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, eds., pp. 1048-1055, Morgan Kaufmann, San Mateo, CA.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 1048-1055
    • Moody, J.E.1    Yarvin, N.2
  • 24
    • 0010870340 scopus 로고
    • Predicting the U.S. index of industrial production
    • Proceedings of the 1993 Parallel Applications in Statistics and Economics Conference, Zeist, the Netherlands
    • Moody, J., Levin, U., and Rehfuss, S. 1993. Predicting the U.S. index of industrial production. In Proceedings of the 1993 Parallel Applications in Statistics and Economics Conference, Zeist, the Netherlands. Special issue of Neural Network World 3(6), 791-794.
    • (1993) Special Issue of Neural Network World , vol.3 , Issue.6 , pp. 791-794
    • Moody, J.1    Levin, U.2    Rehfuss, S.3
  • 25
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • Nowlan, S., and Hinton, G. 1992. Simplifying neural networks by soft weight-sharing. Neural Comp. 4(4), 473-493.
    • (1992) Neural Comp. , vol.4 , Issue.4 , pp. 473-493
    • Nowlan, S.1    Hinton, G.2
  • 26
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • Pearlmutter, B. 1989. Learning state space trajectories in recurrent neural networks. Neural Comp. 1(2), 261-269.
    • (1989) Neural Comp. , vol.1 , Issue.2 , pp. 261-269
    • Pearlmutter, B.1
  • 27
    • 0000599735 scopus 로고
    • Dynamics and architecture for neural computation
    • Pineda, F. 1988. Dynamics and architecture for neural computation. J. Complexity 4, 216-245.
    • (1988) J. Complexity , vol.4 , pp. 216-245
    • Pineda, F.1
  • 28
    • 0001184176 scopus 로고
    • Recurrent backpropagation and the dynamical approach to adaptive neural computation
    • Pineda, F. 1989. Recurrent backpropagation and the dynamical approach to adaptive neural computation. Neural Comp. 1(2), 161-172.
    • (1989) Neural Comp. , vol.1 , Issue.2 , pp. 161-172
    • Pineda, F.1
  • 30
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T., and Girosi, F. 1990. Networks for approximation and learning. IEEE Proc. 78(9), 1481-1497.
    • (1990) IEEE Proc. , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 31
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • J. Mason and M. Cox, eds. Clarendon Press, Oxford
    • Powell, M. 1987. Radial basis functions for multivariable interpolation: A review. In Algorithms for Approximation, J. Mason and M. Cox, eds. Clarendon Press, Oxford.
    • (1987) Algorithms for Approximation
    • Powell, M.1
  • 33
    • 0041770497 scopus 로고
    • Emergence of grandmother memory in feed forward networks: Learning with noise and forgetfulness
    • D. Waltz and J. Feldman, eds. Ablex
    • Scalettar, R., and Zee, A. 1988. Emergence of grandmother memory in feed forward networks: Learning with noise and forgetfulness. In Connectionist Models and Their Implications: Readings from Cognitive Science, D. Waltz and J. Feldman, eds. Ablex.
    • (1988) Connectionist Models and Their Implications: Readings from Cognitive Science
    • Scalettar, R.1    Zee, A.2
  • 34
    • 0017745276 scopus 로고
    • Storing covariance with nonlinearly interacting neurons
    • Sejnowski, T. 1977. Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4, 303-321.
    • (1977) J. Math. Biol. , vol.4 , pp. 303-321
    • Sejnowski, T.1
  • 35
    • 0027624516 scopus 로고
    • Signal processing with fractional lower order moments: Stable processes and their aplications
    • Shao, M., and Nikias, C. 1993. Signal processing with fractional lower order moments: Stable processes and their aplications. IEEE Proc. 81(7), 986-1010.
    • (1993) IEEE Proc. , vol.81 , Issue.7 , pp. 986-1010
    • Shao, M.1    Nikias, C.2
  • 37
    • 0029489722 scopus 로고
    • Overtraining, regularization and searching for minimum with application to neural nets
    • submitted
    • Sjöberg, J., and Ljung, L. 1995. Overtraining, regularization and searching for minimum with application to neural nets. International J. Control (submitted).
    • (1995) International J. Control
    • Sjöberg, J.1    Ljung, L.2
  • 38
    • 0003664883 scopus 로고
    • Winston, New York. Distributed solely by Halsted Press. Scripta series in mathematics. Translation editor, Fritz John
    • Tikhonov, A. N., and Arsenin, V. I. 1977. Solutions of Ill-Posed Problems. Winston, New York. Distributed solely by Halsted Press. Scripta series in mathematics. Translation editor, Fritz John.
    • (1977) Solutions of Ill-Posed Problems
    • Tikhonov, A.N.1    Arsenin, V.I.2
  • 39
    • 0002475925 scopus 로고
    • Network structuring and training using rule-based knowledge
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, eds., Morgan Kaufmann, San Mateo, CA
    • Tresp, V., Hollatz, J., and Ahmad, S. 1993. Network structuring and training using rule-based knowledge. In Advances in Neural Information Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, eds., pp. 871-878. Morgan Kaufmann, San Mateo, CA.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 871-878
    • Tresp, V.1    Hollatz, J.2    Ahmad, S.3
  • 41
    • 0002003139 scopus 로고
    • Back-propagation, weight-elimination and time series prediction
    • T. Sejnowski, G. Hinton, and D. Touretzky, eds., Morgan Kaufmann, San Mateo, CA
    • Weigend, A., Rumelhart, D., and Huberman, B. 1990. Back-propagation, weight-elimination and time series prediction. In Proceedings of the Connectionist Models Summer School, T. Sejnowski, G. Hinton, and D. Touretzky, eds., pp. 105-116. Morgan Kaufmann, San Mateo, CA.
    • (1990) Proceedings of the Connectionist Models Summer School , pp. 105-116
    • Weigend, A.1    Rumelhart, D.2    Huberman, B.3
  • 42
    • 0002437599 scopus 로고
    • Neurocontrol and supervised learning: An overview and evaluation
    • D. White and D. Sofge, eds., Van Nostrand Reinhold, New York
    • Werbos, P. 1992. Neurocontrol and supervised learning: An overview and evaluation. In Handbook of Intelligent Control, D. White and D. Sofge, eds., Van Nostrand Reinhold, New York.
    • (1992) Handbook of Intelligent Control
    • Werbos, P.1
  • 43
    • 0018199792 scopus 로고
    • An empirical test of new forecasting methods derived from a theory of intelligence: The prediction of conflict in Latin America
    • Werbos, P., and Titus, J. 1978. An empirical test of new forecasting methods derived from a theory of intelligence: The prediction of conflict in Latin America. IEEE Trans. Syst. Man Cybern. SMC-8(9), 657-666.
    • (1978) IEEE Trans. Syst. Man Cybern. , vol.SMC-8 , Issue.9 , pp. 657-666
    • Werbos, P.1    Titus, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.