메뉴 건너뛰기




Volumn 17, Issue 4, 2006, Pages 1064-1069

A fast identification algorithm for Box-Cox transformation based radial basis function neural network

Author keywords

Box Cox transform; Forward regression; Gauss Newton algorithm; QR decomposition; Radial basis function; Subset selection

Indexed keywords

ALGORITHMS; MATHEMATICAL MODELS; MATHEMATICAL TRANSFORMATIONS; MATRIX ALGEBRA; MAXIMUM LIKELIHOOD ESTIMATION; REGRESSION ANALYSIS;

EID: 33746862896     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2006.875986     Document Type: Article
Times cited : (23)

References (16)
  • 1
    • 0000672424 scopus 로고
    • "Fast learning in networks of locally tuned processing units"
    • J. E. Moody and C. J. Darken, "Fast learning in networks of locally tuned processing units," Neural Comput., vol. 1, pp. 281-294, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.E.1    Darken, C.J.2
  • 2
    • 0026116468 scopus 로고
    • "Orthogonal least squares learning algorithm for radial basis function networks"
    • Mar
    • S. Chen, C. F. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., vol. 2, pp. 302-309, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.2    Grant, P.M.3
  • 3
    • 0032122726 scopus 로고    scopus 로고
    • "Conditional fuzzy clustering in the design of radial basis function neural networks"
    • Jul
    • W. Pedrycz, "Conditional fuzzy clustering in the design of radial basis function neural networks," IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 601-612, Jul. 1998.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.4 , pp. 601-612
    • Pedrycz, W.1
  • 4
    • 1642578191 scopus 로고    scopus 로고
    • "Experimental design and model construction algorithms for radial basis function networks"
    • X. Hong and C. J Harris, "Experimental design and model construction algorithms for radial basis function networks," Int. J. Syst. Sci., vol. 34, no. 14-15, pp. 733-745, 2003.
    • (2003) Int. J. Syst. Sci. , vol.34 , Issue.14-15 , pp. 733-745
    • Hong, X.1    Harris, C.J.2
  • 5
    • 0000133998 scopus 로고
    • "An analysis of transformation"
    • G. E. P. Box and D. R. Cox, "An analysis of transformation," J. Roy. Statist. Soc. B, vol. 26, no. 2, pp. 211-252, 1964.
    • (1964) J. Roy. Statist. Soc. B , vol.26 , Issue.2 , pp. 211-252
    • Box, G.E.P.1    Cox, D.R.2
  • 7
    • 0037360099 scopus 로고    scopus 로고
    • "Backpropagation of pseudoerrors: Neural networks that are adpative to heterogeneous noise"
    • Mar
    • A. A. Ding and X. He, "Backpropagation of pseudoerrors: Neural networks that are adpative to heterogeneous noise," IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 253-262, Mar. 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.2 , pp. 253-262
    • Ding, A.A.1    He, X.2
  • 8
    • 0024771664 scopus 로고
    • "Orthogonal least squares methods and their applications to non-linear system identification"
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their applications to non-linear system identification," Int. J. Control, vol. 50, pp. 1873-1896, 1989.
    • (1989) Int. J. Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 9
    • 0032594851 scopus 로고    scopus 로고
    • "Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks"
    • Sep
    • S. Chen, Y. Wu, and B. L. Luk, "Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1239-1243, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 10
    • 33751560009 scopus 로고
    • "Regularisation in the selection of radial basis function centers"
    • M. J. L. Orr, "Regularisation in the selection of radial basis function centers," Neural Comput., vol. 7, no. 3, pp. 954-975, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.3 , pp. 954-975
    • Orr, M.J.L.1
  • 12
    • 0036738761 scopus 로고    scopus 로고
    • "Nonlinear model structure design and construction using orthogonal least squares and d-optimality design"
    • Sep
    • X. Hong and C. J. Harris, "Nonlinear model structure design and construction using orthogonal least squares and d-optimality design," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1245-1250, Sep. 2001.
    • (2001) IEEE Trans. Neural Netw. , vol.13 , Issue.5 , pp. 1245-1250
    • Hong, X.1    Harris, C.J.2
  • 13
    • 0038548172 scopus 로고    scopus 로고
    • "Sparse kernel regression modelling using combined locally regularized orthogonal least squares and d-optimality experimental design"
    • Jun
    • S. Chen, X. Hong, and C. J. Harris, "Sparse kernel regression modelling using combined locally regularized orthogonal least squares and d-optimality experimental design," IEEE Trans. Autom. Control, vol. 48, no. 6, pp. 1029-1036, Jun. 2003.
    • (2003) IEEE Trans. Autom. Control , vol.48 , Issue.6 , pp. 1029-1036
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 14
    • 84968501766 scopus 로고
    • "Rank-revealing QR factorisations and the signular value decomposition"
    • Y. P. Hong and C. T. Pan, "Rank-revealing QR factorisations and the signular value decomposition," Math. Comput., vol. 58, no. 197, pp. 213-232, 1992.
    • (1992) Math. Comput. , vol.58 , Issue.197 , pp. 213-232
    • Hong, Y.P.1    Pan, C.T.2
  • 15
    • 0012644896 scopus 로고
    • "Problems related to unconstrained optimization"
    • in W. Murray, Ed. London, U.K.: Academic
    • M. J. D. Powell, "Problems related to unconstrained optimization," in Numerical Methods for Unconstrained Optimization, W. Murray, Ed. London, U.K.: Academic, 1972, pp. 29-55.
    • (1972) Numerical Methods for Unconstrained Optimization , pp. 29-55
    • Powell, M.J.D.1
  • 16
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Royal Holloway College, Univ. London, NeuroCOLT Tech. Rep. NC-TR-98-030 [Online]. Available
    • A. J. Smola and B. Schölkopf, A tutorial on support vector regression Royal Holloway College, Univ. London, NeuroCOLT Tech. Rep. NC-TR-98-030, 1998 [Online]. Available: http://www.kernel-machines.org/ tutorial.html
    • (1998)
    • Smola, A.J.1    Schölkopf, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.