메뉴 건너뛰기




Volumn 77, Issue 1-3, 2008, Pages 175-198

Efficient learning of relational object class models

Author keywords

Boosting; Generative models; Object class recognition; Object localization; Weakly supervised learning

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL COMPLEXITY; IMAGE SEGMENTATION; MATHEMATICAL MODELS; PARAMETER ESTIMATION; SUPERVISED LEARNING;

EID: 39749094395     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-007-0091-7     Document Type: Article
Times cited : (25)

References (38)
  • 1
    • 12844249589 scopus 로고    scopus 로고
    • Learning to detect objects in images via a sparse, part based representation
    • 11
    • Agarwal, S., Awan, A., & Roth, D. (2004). Learning to detect objects in images via a sparse, part based representation. Pattern Analysis and Machine Intelligence, 20(11), 1475-1490.
    • (2004) Pattern Analysis and Machine Intelligence , vol.20 , pp. 1475-1490
    • Agarwal, S.1    Awan, A.2    Roth, D.3
  • 2
    • 84937542502 scopus 로고    scopus 로고
    • Learning a sparse representation for object detection
    • Agarwal, S., & Roth, D. (2002). Learning a sparse representation for object detection. In ECCV (pp. 113-130).
    • (2002) ECCV , pp. 113-130
    • Agarwal, S.1    Roth, D.2
  • 3
    • 33745896230 scopus 로고    scopus 로고
    • Efficient learning of relational object class models
    • Bar-Hillel, A., Hertz, T., & Weinshall, D. (2005a). Efficient learning of relational object class models. In ICCV.
    • (2005) ICCV
    • Bar-Hillel, A.1    Hertz, T.2    Weinshall, D.3
  • 4
    • 33745124741 scopus 로고    scopus 로고
    • Object class recognition by boosting a part based model
    • IEEE Computer Society Los Alamitos
    • Bar-Hillel, A., Hertz, T., & Weinshall, D. (2005b). Object class recognition by boosting a part based model. In CVPR. Los Alamitos: IEEE Computer Society
    • (2005) CVPR
    • Bar-Hillel, A.1    Hertz, T.2    Weinshall, D.3
  • 7
    • 24644524200 scopus 로고    scopus 로고
    • Visual categorization with bags of keypoints
    • Csurka, G., Bray, C., Dance, C., & Fan, L. (2004). Visual categorization with bags of keypoints. In ECCV.
    • (2004) ECCV
    • Csurka, G.1    Bray, C.2    Dance, C.3    Fan, L.4
  • 9
    • 33745815314 scopus 로고    scopus 로고
    • The 2005 pascal visual object classes challenge
    • J. Quinonero-Candela, I. Dagan, B. Magnini, & F. d'Alche-Buc (Eds.) Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising textual entailment
    • Everingham, M. R., Zisserman, A., Williams, C. K. I., & Van Gool, L. et al. (2006). The 2005 pascal visual object classes challenge. In J. Quinonero-Candela, I. Dagan, B. Magnini, & F. d'Alche-Buc (Eds.), LNAI: Vol. 3944. Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising textual entailment (pp. 117-176).
    • (2006) LNAI , vol.3944 , pp. 117-176
    • Everingham, M.R.1    Zisserman, A.2    Williams, C.K.I.3    Van Gool, L.4
  • 10
    • 0344983284 scopus 로고    scopus 로고
    • A bayesian approach to unsupervised one shot learning of object catgories
    • Fei-Fei, L., Fergus, R., & Perona, P. (2003). A bayesian approach to unsupervised one shot learning of object catgories. In ICCV.
    • (2003) ICCV
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 12
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale invariant learning
    • IEEE Computer Society Los Alamitos
    • Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale invariant learning. In CVPR. Los Alamitos: IEEE Computer Society
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 13
    • 24644483228 scopus 로고    scopus 로고
    • A sparse object category model for efficient learning and exhaustive recognition
    • Fergus, R., Perona, P., & Zisserman, A. (2005). A sparse object category model for efficient learning and exhaustive recognition. In CVPR.
    • (2005) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 14
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In ICML (pp. 148-156).
    • (1996) ICML , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view ofboosting
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view ofboosting. Annals of Statistics, 28, 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 33745911319 scopus 로고    scopus 로고
    • Integrating representative and discriminant models for object category detection
    • Fritz, M., Leibe, B., Caputo, B., & Schiele, B. (2005). Integrating representative and discriminant models for object category detection. In ICCV.
    • (2005) ICCV
    • Fritz, M.1    Leibe, B.2    Caputo, B.3    Schiele, B.4
  • 17
    • 24644509218 scopus 로고    scopus 로고
    • Discriminant saliency for visual recognition from cluttered scenes
    • Gao, D., & Vasconcelos, N. (2004). Discriminant saliency for visual recognition from cluttered scenes. In NIPS.
    • (2004) NIPS
    • Gao, D.1    Vasconcelos, N.2
  • 18
    • 33745181681 scopus 로고    scopus 로고
    • A discriminative framework for modeling object classes
    • Holub, A. D., & Perona, P. (2005). A discriminative framework for modeling object classes. In CVPR.
    • (2005) CVPR
    • Holub, A.D.1    Perona, P.2
  • 19
    • 33745933878 scopus 로고    scopus 로고
    • Combining generative models and fisher kernels for object class recognition
    • Holub, A. D., Welling, M., & Perona, P. (2005). Combining generative models and fisher kernels for object class recognition. In ICCV.
    • (2005) ICCV
    • Holub, A.D.1    Welling, M.2    Perona, P.3
  • 22
    • 33745918661 scopus 로고    scopus 로고
    • A generative /discriminative learning algorithm for image classification
    • Li, Y., Shapiro, L., & Bilmes, J. (2005). A generative /discriminative learning algorithm for image classification. In ICCV (Vol. 2, pp. 1605-1612).
    • (2005) ICCV , vol.2 , pp. 1605-1612
    • Li, Y.1    Shapiro, L.2    Bilmes, J.3
  • 23
    • 84860624328 scopus 로고    scopus 로고
    • Efficient unsupervised learning for localization and detection in object categories
    • Loeff, N., Arora, H., Sorokin, A., & Forsyth, D. (2005). Efficient unsupervised learning for localization and detection in object categories. In NIPS.
    • (2005) NIPS
    • Loeff, N.1    Arora, H.2    Sorokin, A.3    Forsyth, D.4
  • 24
    • 0035686858 scopus 로고    scopus 로고
    • Local feature view clustering for 3D object recognition
    • Lowe, D. (2001). Local feature view clustering for 3D object recognition. In CVPR, (pp. 682-688).
    • (2001) CVPR , pp. 682-688
    • Lowe, D.1
  • 25
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent in function space
    • Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent in function space. In NIPS (pp. 512-518).
    • (2000) NIPS , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 26
    • 24644462948 scopus 로고    scopus 로고
    • Using the forest to see the trees: A graphical model relating features, objects and scenes
    • Murphy, K. P., Torralba, A., & Freeman, W. T. (2003). Using the forest to see the trees: a graphical model relating features, objects and scenes. In NIPS.
    • (2003) NIPS
    • Murphy, K.P.1    Torralba, A.2    Freeman, W.T.3
  • 27
    • 1942418620 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
    • NG, A. Y., & Jordan, M. I. (2001). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In NIPS.
    • (2001) NIPS
    • Ng, A.Y.1    Jordan, M.I.2
  • 29
    • 21944442484 scopus 로고    scopus 로고
    • Weak hypotheses and boosting for generic object detection and recognition
    • Opelt, A., Fussenegger, M., Pinz, A., & Auer, P. (2004b). Weak hypotheses and boosting for generic object detection and recognition. In ECCV.
    • (2004) ECCV
    • Opelt, A.1    Fussenegger, M.2    Pinz, A.3    Auer, P.4
  • 30
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting using confidence-rated predictions
    • 3
    • Schapire, R. E., & Singer, Y. (1999). Improved boosting using confidence-rated predictions. Machine Learning, 37(3), 297-336.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 31
    • 39749177547 scopus 로고    scopus 로고
    • A new biologically motivated framework for robust object recognition
    • Serre, T., Wolf, L., & Poggio, T. (2005). A new biologically motivated framework for robust object recognition. In CVPR.
    • (2005) CVPR
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 32
    • 35048840352 scopus 로고    scopus 로고
    • Appearance based qualitative image description for object class recognition
    • Thureson, J., & Carlsson, S. (2004). Appearance based qualitative image description for object class recognition. In ECCV (pp. 518-529).
    • (2004) ECCV , pp. 518-529
    • Thureson, J.1    Carlsson, S.2
  • 33
    • 24644445594 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • Torralba, A., Murphy, K., & Freeman, W. T. (2004). Contextual models for object detection using boosted random fields. In NIPS.
    • (2004) NIPS
    • Torralba, A.1    Murphy, K.2    Freeman, W.T.3
  • 34
    • 0036307392 scopus 로고    scopus 로고
    • Visual features of intermediate complexity and their use in classification
    • Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5, 682-687.
    • (2002) Nature Neuroscience , vol.5 , pp. 682-687
    • Ullman, S.1    Vidal-Naquet, M.2    Sali, E.3
  • 35
    • 24644479275 scopus 로고    scopus 로고
    • Generative versus discriminative methods for object recognition
    • Ulusoy, I., & Bishop, C. M. (2005). Generative versus discriminative methods for object recognition. In CVPR (Vol. 2, pp. 258-265).
    • (2005) CVPR , vol.2 , pp. 258-265
    • Ulusoy, I.1    Bishop, C.M.2
  • 37
    • 0345414114 scopus 로고    scopus 로고
    • Object recognition with informative features and linear classification
    • Vidal-Naquet, M., & Ullman, S. (2003). Object recognition with informative features and linear classification. In ICCV.
    • (2003) ICCV
    • Vidal-Naquet, M.1    Ullman, S.2
  • 38
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR.
    • (2001) CVPR
    • Viola, P.1    Jones, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.