-
1
-
-
12844249589
-
Learning to detect objects in images via a sparse, part based representation
-
11
-
Agarwal, S., Awan, A., & Roth, D. (2004). Learning to detect objects in images via a sparse, part based representation. Pattern Analysis and Machine Intelligence, 20(11), 1475-1490.
-
(2004)
Pattern Analysis and Machine Intelligence
, vol.20
, pp. 1475-1490
-
-
Agarwal, S.1
Awan, A.2
Roth, D.3
-
2
-
-
84937542502
-
Learning a sparse representation for object detection
-
Agarwal, S., & Roth, D. (2002). Learning a sparse representation for object detection. In ECCV (pp. 113-130).
-
(2002)
ECCV
, pp. 113-130
-
-
Agarwal, S.1
Roth, D.2
-
3
-
-
33745896230
-
Efficient learning of relational object class models
-
Bar-Hillel, A., Hertz, T., & Weinshall, D. (2005a). Efficient learning of relational object class models. In ICCV.
-
(2005)
ICCV
-
-
Bar-Hillel, A.1
Hertz, T.2
Weinshall, D.3
-
4
-
-
33745124741
-
Object class recognition by boosting a part based model
-
IEEE Computer Society Los Alamitos
-
Bar-Hillel, A., Hertz, T., & Weinshall, D. (2005b). Object class recognition by boosting a part based model. In CVPR. Los Alamitos: IEEE Computer Society
-
(2005)
CVPR
-
-
Bar-Hillel, A.1
Hertz, T.2
Weinshall, D.3
-
7
-
-
24644524200
-
Visual categorization with bags of keypoints
-
Csurka, G., Bray, C., Dance, C., & Fan, L. (2004). Visual categorization with bags of keypoints. In ECCV.
-
(2004)
ECCV
-
-
Csurka, G.1
Bray, C.2
Dance, C.3
Fan, L.4
-
9
-
-
33745815314
-
The 2005 pascal visual object classes challenge
-
J. Quinonero-Candela, I. Dagan, B. Magnini, & F. d'Alche-Buc (Eds.) Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising textual entailment
-
Everingham, M. R., Zisserman, A., Williams, C. K. I., & Van Gool, L. et al. (2006). The 2005 pascal visual object classes challenge. In J. Quinonero-Candela, I. Dagan, B. Magnini, & F. d'Alche-Buc (Eds.), LNAI: Vol. 3944. Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising textual entailment (pp. 117-176).
-
(2006)
LNAI
, vol.3944
, pp. 117-176
-
-
Everingham, M.R.1
Zisserman, A.2
Williams, C.K.I.3
Van Gool, L.4
-
10
-
-
0344983284
-
A bayesian approach to unsupervised one shot learning of object catgories
-
Fei-Fei, L., Fergus, R., & Perona, P. (2003). A bayesian approach to unsupervised one shot learning of object catgories. In ICCV.
-
(2003)
ICCV
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
12
-
-
0041940256
-
Object class recognition by unsupervised scale invariant learning
-
IEEE Computer Society Los Alamitos
-
Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale invariant learning. In CVPR. Los Alamitos: IEEE Computer Society
-
(2003)
CVPR
-
-
Fergus, R.1
Perona, P.2
Zisserman, A.3
-
13
-
-
24644483228
-
A sparse object category model for efficient learning and exhaustive recognition
-
Fergus, R., Perona, P., & Zisserman, A. (2005). A sparse object category model for efficient learning and exhaustive recognition. In CVPR.
-
(2005)
CVPR
-
-
Fergus, R.1
Perona, P.2
Zisserman, A.3
-
14
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In ICML (pp. 148-156).
-
(1996)
ICML
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
15
-
-
0034164230
-
Additive logistic regression: A statistical view ofboosting
-
Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view ofboosting. Annals of Statistics, 28, 337-407.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
16
-
-
33745911319
-
Integrating representative and discriminant models for object category detection
-
Fritz, M., Leibe, B., Caputo, B., & Schiele, B. (2005). Integrating representative and discriminant models for object category detection. In ICCV.
-
(2005)
ICCV
-
-
Fritz, M.1
Leibe, B.2
Caputo, B.3
Schiele, B.4
-
17
-
-
24644509218
-
Discriminant saliency for visual recognition from cluttered scenes
-
Gao, D., & Vasconcelos, N. (2004). Discriminant saliency for visual recognition from cluttered scenes. In NIPS.
-
(2004)
NIPS
-
-
Gao, D.1
Vasconcelos, N.2
-
18
-
-
33745181681
-
A discriminative framework for modeling object classes
-
Holub, A. D., & Perona, P. (2005). A discriminative framework for modeling object classes. In CVPR.
-
(2005)
CVPR
-
-
Holub, A.D.1
Perona, P.2
-
19
-
-
33745933878
-
Combining generative models and fisher kernels for object class recognition
-
Holub, A. D., Welling, M., & Perona, P. (2005). Combining generative models and fisher kernels for object class recognition. In ICCV.
-
(2005)
ICCV
-
-
Holub, A.D.1
Welling, M.2
Perona, P.3
-
20
-
-
0035507681
-
Scale, saliency and image description
-
2
-
Kadir, T., & Brady, M. (2001). Scale, saliency and image description. International Journal of Computer Vision, 45(2), 83-105.
-
(2001)
International Journal of Computer Vision
, vol.45
, pp. 83-105
-
-
Kadir, T.1
Brady, M.2
-
22
-
-
33745918661
-
A generative /discriminative learning algorithm for image classification
-
Li, Y., Shapiro, L., & Bilmes, J. (2005). A generative /discriminative learning algorithm for image classification. In ICCV (Vol. 2, pp. 1605-1612).
-
(2005)
ICCV
, vol.2
, pp. 1605-1612
-
-
Li, Y.1
Shapiro, L.2
Bilmes, J.3
-
23
-
-
84860624328
-
Efficient unsupervised learning for localization and detection in object categories
-
Loeff, N., Arora, H., Sorokin, A., & Forsyth, D. (2005). Efficient unsupervised learning for localization and detection in object categories. In NIPS.
-
(2005)
NIPS
-
-
Loeff, N.1
Arora, H.2
Sorokin, A.3
Forsyth, D.4
-
24
-
-
0035686858
-
Local feature view clustering for 3D object recognition
-
Lowe, D. (2001). Local feature view clustering for 3D object recognition. In CVPR, (pp. 682-688).
-
(2001)
CVPR
, pp. 682-688
-
-
Lowe, D.1
-
25
-
-
84898978212
-
Boosting algorithms as gradient descent in function space
-
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent in function space. In NIPS (pp. 512-518).
-
(2000)
NIPS
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
26
-
-
24644462948
-
Using the forest to see the trees: A graphical model relating features, objects and scenes
-
Murphy, K. P., Torralba, A., & Freeman, W. T. (2003). Using the forest to see the trees: a graphical model relating features, objects and scenes. In NIPS.
-
(2003)
NIPS
-
-
Murphy, K.P.1
Torralba, A.2
Freeman, W.T.3
-
27
-
-
1942418620
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
-
NG, A. Y., & Jordan, M. I. (2001). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In NIPS.
-
(2001)
NIPS
-
-
Ng, A.Y.1
Jordan, M.I.2
-
28
-
-
33645985275
-
-
(Technical report tr-emt-2004-01). Submitted to PAMI
-
Opelt, A., Fussenegger, M., Pinz, A., & Auer, P. (2004a). Object recognition with boosting (Technical report tr-emt-2004-01). Submitted to PAMI.
-
(2004)
Object Recognition with Boosting
-
-
Opelt, A.1
Fussenegger, M.2
Pinz, A.3
Auer, P.4
-
29
-
-
21944442484
-
Weak hypotheses and boosting for generic object detection and recognition
-
Opelt, A., Fussenegger, M., Pinz, A., & Auer, P. (2004b). Weak hypotheses and boosting for generic object detection and recognition. In ECCV.
-
(2004)
ECCV
-
-
Opelt, A.1
Fussenegger, M.2
Pinz, A.3
Auer, P.4
-
30
-
-
0033281701
-
Improved boosting using confidence-rated predictions
-
3
-
Schapire, R. E., & Singer, Y. (1999). Improved boosting using confidence-rated predictions. Machine Learning, 37(3), 297-336.
-
(1999)
Machine Learning
, vol.37
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
31
-
-
39749177547
-
A new biologically motivated framework for robust object recognition
-
Serre, T., Wolf, L., & Poggio, T. (2005). A new biologically motivated framework for robust object recognition. In CVPR.
-
(2005)
CVPR
-
-
Serre, T.1
Wolf, L.2
Poggio, T.3
-
32
-
-
35048840352
-
Appearance based qualitative image description for object class recognition
-
Thureson, J., & Carlsson, S. (2004). Appearance based qualitative image description for object class recognition. In ECCV (pp. 518-529).
-
(2004)
ECCV
, pp. 518-529
-
-
Thureson, J.1
Carlsson, S.2
-
33
-
-
24644445594
-
Contextual models for object detection using boosted random fields
-
Torralba, A., Murphy, K., & Freeman, W. T. (2004). Contextual models for object detection using boosted random fields. In NIPS.
-
(2004)
NIPS
-
-
Torralba, A.1
Murphy, K.2
Freeman, W.T.3
-
34
-
-
0036307392
-
Visual features of intermediate complexity and their use in classification
-
Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5, 682-687.
-
(2002)
Nature Neuroscience
, vol.5
, pp. 682-687
-
-
Ullman, S.1
Vidal-Naquet, M.2
Sali, E.3
-
35
-
-
24644479275
-
Generative versus discriminative methods for object recognition
-
Ulusoy, I., & Bishop, C. M. (2005). Generative versus discriminative methods for object recognition. In CVPR (Vol. 2, pp. 258-265).
-
(2005)
CVPR
, vol.2
, pp. 258-265
-
-
Ulusoy, I.1
Bishop, C.M.2
-
37
-
-
0345414114
-
Object recognition with informative features and linear classification
-
Vidal-Naquet, M., & Ullman, S. (2003). Object recognition with informative features and linear classification. In ICCV.
-
(2003)
ICCV
-
-
Vidal-Naquet, M.1
Ullman, S.2
-
38
-
-
0035680116
-
Rapid object detection using a boosted cascade of simple features
-
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR.
-
(2001)
CVPR
-
-
Viola, P.1
Jones, M.2
|