메뉴 건너뛰기




Volumn II, Issue , 2005, Pages 1762-1769

Efficient learning of relational object class models

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER NETWORKS; FEATURE EXTRACTION; IMAGE PROCESSING; MATHEMATICAL MODELS; OPTIMIZATION; PARAMETER ESTIMATION;

EID: 33745896230     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2005.83     Document Type: Conference Paper
Times cited : (30)

References (15)
  • 1
    • 33745124741 scopus 로고    scopus 로고
    • Object class recognition by boosting a part based model
    • IEEE Computer Society
    • Bar Hillel A., Hertz T., and Weinshall D. Object class recognition by boosting a part based model. In CVPR. IEEE Computer Society, 2005.
    • (2005) CVPR
    • Bar Hillel, A.1    Hertz, T.2    Weinshall, D.3
  • 2
    • 21944442484 scopus 로고    scopus 로고
    • Weak hypotheses and boosting for generic object detection and recognition
    • Opelt A., Fussenegger M., Pinz A., and Auer P. Weak hypotheses and boosting for generic object detection and recognition. In ECCV, 2004.
    • (2004) ECCV
    • Opelt, A.1    Fussenegger, M.2    Pinz, A.3    Auer, P.4
  • 3
    • 0043005300 scopus 로고    scopus 로고
    • Learning a sparse representation for object detection
    • Springer
    • Shivani A. and Roth D. Learning a sparse representation for object detection. In ECCV. Springer, 2002.
    • (2002) ECCV
    • Shivani, A.1    Roth, D.2
  • 4
    • 1942418620 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
    • NG A.Y. and Jordan M.I. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In NIPS, 2001.
    • (2001) NIPS
    • Ng, A.Y.1    Jordan, M.I.2
  • 5
    • 24644509218 scopus 로고    scopus 로고
    • Discriminant saliency for visual recognition from cluttered scenes
    • D. Gao and N. Vasconcelos. Discriminant saliency for visual recognition from cluttered scenes. In NIPS, 2004.
    • (2004) NIPS
    • Gao, D.1    Vasconcelos, N.2
  • 6
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view ofboosting
    • Friedman J. H., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view ofboosting. Ann. Statist., 28:337-407, 2000.
    • (2000) Ann. Statist. , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 24644462948 scopus 로고    scopus 로고
    • Using the forest to see the trees: A graphical model relating features, objects and scenes
    • Murphy K.P., Torralba A., and Freeman W. T. Using the forest to see the trees: a graphical model relating features, objects and scenes. In NIPS, 2003.
    • (2003) NIPS
    • Murphy, K.P.1    Torralba, A.2    Freeman, W.T.3
  • 8
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent in function space
    • Mason L., Baxter J., Bartlett P., and Frean M. Boosting algorithms as gradient descent in function space. In NIPS, pages 512-518, 2000.
    • (2000) NIPS , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 9
    • 0344983284 scopus 로고    scopus 로고
    • A bayesian approach to unsupervised one shot learning of object catgories
    • F.F. Li, R. Fergus, and Perona P. A bayesian approach to unsupervised one shot learning of object catgories. In ICCV, 2003.
    • (2003) ICCV
    • Li, F.F.1    Fergus, R.2    Perona, P.3
  • 10
    • 0345414114 scopus 로고    scopus 로고
    • Object recognition with informative features and linear classification
    • Vidal-Naquet M. and Ullman S. Object recognition with informative features and linear classification. In ICCV, 2003.
    • (2003) ICCV
    • Vidal-Naquet, M.1    Ullman, S.2
  • 11
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale invariant learning
    • IEEE Computer Society
    • Fergus R., Perona P., and Zisserman A. Object class recognition by unsupervised scale invariant learning. In CVPR. IEEE Computer Society, 2003.
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 12
    • 24644483228 scopus 로고    scopus 로고
    • A sparse object category model for efficient learning and exhaustive recognition
    • Fergus R., Perona P., and Zisserman A. A sparse object category model for efficient learning and exhaustive recognition. In CVPR, 2005.
    • (2005) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 13
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting using confidence-rated predictions
    • Schapire R.E. and Singer Y. Improved boosting using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 14
    • 34248936100 scopus 로고
    • Basic objects in natural categories
    • Eleanor Rosch. Basic objects in natural categories. Cognitive Psychology, 8:382-349, 1976.
    • (1976) Cognitive Psychology , vol.8 , pp. 382-1349
    • Rosch, E.1
  • 15
    • 0035507681 scopus 로고    scopus 로고
    • Scale, saliency and image description
    • November
    • Kadir T. and Brady M. Scale, saliency and image description. IJCV, 45(2):83-105, November 2001.
    • (2001) IJCV , vol.45 , Issue.2 , pp. 83-105
    • Kadir, T.1    Brady, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.