메뉴 건너뛰기




Volumn 34, Issue 4, 2008, Pages 2436-2443

Applicability of feed-forward and recurrent neural networks to Boolean function complexity modeling

Author keywords

Bias; Biological sequence analysis; Classifier design; Feed forward neural network; Machine learning; Motif; Pattern recognition; Recurrent neural network; Sub cellular localization

Indexed keywords

BOOLEAN FUNCTIONS; LEARNING SYSTEMS; MATHEMATICAL MODELS; PATTERN RECOGNITION; RECURRENT NEURAL NETWORKS;

EID: 38649115638     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.04.010     Document Type: Article
Times cited : (9)

References (30)
  • 2
    • 34250378032 scopus 로고    scopus 로고
    • Empirical analysis and mathematical representation of the path length complexity in binary decision diagrams
    • Assi A., Prasad P.W.C., Mills B., and El-Chouemi A. Empirical analysis and mathematical representation of the path length complexity in binary decision diagrams. Journal of Computer Science 2 3 (2005) 236-244
    • (2005) Journal of Computer Science , vol.2 , Issue.3 , pp. 236-244
    • Assi, A.1    Prasad, P.W.C.2    Mills, B.3    El-Chouemi, A.4
  • 3
    • 27944506942 scopus 로고    scopus 로고
    • Bhanja, S., Lingasubramanian, K., & Ranganathan, N. (2005). Estimation of switching activity in sequential circuits using dynamic Bayesian networks. In Proceedings of VLSI design (pp. 586-591).
    • Bhanja, S., Lingasubramanian, K., & Ranganathan, N. (2005). Estimation of switching activity in sequential circuits using dynamic Bayesian networks. In Proceedings of VLSI design (pp. 586-591).
  • 4
    • 38649083523 scopus 로고    scopus 로고
    • Boden, M. (2006). A guide to recurrent neural networks and backpropagation. .
    • Boden, M. (2006). A guide to recurrent neural networks and backpropagation. .
  • 7
    • 0022769976 scopus 로고
    • Graph-based algorithm for Boolean function manipulation
    • Bryant R.E. Graph-based algorithm for Boolean function manipulation. IEEE Transactions on Computers 35 (1986) 677-691
    • (1986) IEEE Transactions on Computers , vol.35 , pp. 677-691
    • Bryant, R.E.1
  • 9
    • 38649088336 scopus 로고    scopus 로고
    • Cho, K. (1988). Test pattern generation for combinational and sequential MOS circuits by symbolic F&T simulation. PhD thesis. Carnegie Mellon University.
    • Cho, K. (1988). Test pattern generation for combinational and sequential MOS circuits by symbolic F&T simulation. PhD thesis. Carnegie Mellon University.
  • 10
    • 38649107158 scopus 로고    scopus 로고
    • Coudert, O., Berthec, C., & Madre, J. (1989). Verification of sequential machines using Boolean function vectors. In IMEC-IFIP international workshop on applied formal methods for correct VLSI design.
    • Coudert, O., Berthec, C., & Madre, J. (1989). Verification of sequential machines using Boolean function vectors. In IMEC-IFIP international workshop on applied formal methods for correct VLSI design.
  • 12
    • 38649089232 scopus 로고    scopus 로고
    • Timely communications: Root finding and approximation approaches through neural networks
    • Epitropakis M.G., and Vrahatis M.N. Timely communications: Root finding and approximation approaches through neural networks. ACM SIGSAM Bulletin 39 4 (2005)
    • (2005) ACM SIGSAM Bulletin , vol.39 , Issue.4
    • Epitropakis, M.G.1    Vrahatis, M.N.2
  • 13
    • 25144436369 scopus 로고    scopus 로고
    • Franco, L. (2005). Role of function complexity and network size in the generalization ability of feedforward networks. In Lecture Notes in Computer Science. Computational intelligence and bioinspired systems: eighth international workshop on artificial neural networks. IWANN 2005. v3512 (pp. 1-8).
    • Franco, L. (2005). Role of function complexity and network size in the generalization ability of feedforward networks. In Lecture Notes in Computer Science. Computational intelligence and bioinspired systems: eighth international workshop on artificial neural networks. IWANN 2005. v3512 (pp. 1-8).
  • 14
    • 10944266203 scopus 로고    scopus 로고
    • Franco, L., & Anthony, M. (2004). On a generalization complexity measure for Boolean functions, IEEE Conference on Neural Networks. In Proceedings on 2004 IEEE international joint conference on neural networks (pp. 973-978).
    • Franco, L., & Anthony, M. (2004). On a generalization complexity measure for Boolean functions, IEEE Conference on Neural Networks. In Proceedings on 2004 IEEE international joint conference on neural networks (pp. 973-978).
  • 15
    • 33749259827 scopus 로고    scopus 로고
    • Graves, A., Fernández S., Gomez F., & Schmidhuber J. (2006). Connectionist temporal classification: labeling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd international conference on machine learning, ICML '06, June 2006.
    • Graves, A., Fernández S., Gomez F., & Schmidhuber J. (2006). Connectionist temporal classification: labeling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd international conference on machine learning, ICML '06, June 2006.
  • 16
    • 0033359923 scopus 로고    scopus 로고
    • Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering
    • Hansen M., Yalcin H., and Hayes J.P. Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering. IEEE Transactions on Design and Test 16 (1999) 72-80
    • (1999) IEEE Transactions on Design and Test , vol.16 , pp. 72-80
    • Hansen, M.1    Yalcin, H.2    Hayes, J.P.3
  • 17
    • 38649101656 scopus 로고    scopus 로고
    • Jeff, (2004). What's a Z-Score and Why Use it in Usability Testing? (website).
    • Jeff, (2004). What's a Z-Score and Why Use it in Usability Testing? (website).
  • 18
    • 0024172602 scopus 로고    scopus 로고
    • Mahk, S., Wang, A, Brayton, R., & Sangiovanni-Viicentelli, A. (1988). Logic verification using binary decision diagrams in a logic synthesis environment. In Proceedings in international conference on CAD (pp. 6-9).
    • Mahk, S., Wang, A, Brayton, R., & Sangiovanni-Viicentelli, A. (1988). Logic verification using binary decision diagrams in a logic synthesis environment. In Proceedings in international conference on CAD (pp. 6-9).
  • 20
    • 0024890438 scopus 로고    scopus 로고
    • McGeer, P., & Brayton, R. (1989). Efficient algorithms for computing the longest viable path in a combinational network. In Proceedings of the 26th design automation conference (pp. 561-567).
    • McGeer, P., & Brayton, R. (1989). Efficient algorithms for computing the longest viable path in a combinational network. In Proceedings of the 26th design automation conference (pp. 561-567).
  • 22
    • 0002007506 scopus 로고
    • Progress in digital integrated electronics
    • Moore G.E. Progress in digital integrated electronics. IEEE IEDM (1975) 11-13
    • (1975) IEEE IEDM , pp. 11-13
    • Moore, G.E.1
  • 23
    • 0024753283 scopus 로고
    • The transduction method-design of logic networks based on permissible functions
    • Muroga S., Kambayashi Y., Lai H., and Culliney J. The transduction method-design of logic networks based on permissible functions. IEEE Transactions on Computers 38 (1989) 1404-1424
    • (1989) IEEE Transactions on Computers , vol.38 , pp. 1404-1424
    • Muroga, S.1    Kambayashi, Y.2    Lai, H.3    Culliney, J.4
  • 26
    • 29244446843 scopus 로고    scopus 로고
    • Ramalingam, N., & Bhanja, S. (2005). Causal probabilistic input dependency learning for switching model in VLSI circuits. In Proceedings of the ACM great lakes symposium on VLSI (pp. 112-115).
    • Ramalingam, N., & Bhanja, S. (2005). Causal probabilistic input dependency learning for switching model in VLSI circuits. In Proceedings of the ACM great lakes symposium on VLSI (pp. 112-115).
  • 27
    • 38649099786 scopus 로고    scopus 로고
    • Somenzi, F. (2003). CUDD: CU Decision Diagram Package. .
    • Somenzi, F. (2003). CUDD: CU Decision Diagram Package. .
  • 30
    • 0031098782 scopus 로고    scopus 로고
    • Preparing the right data for training neural networks
    • Yale K. Preparing the right data for training neural networks. IEEE Spectrum 34 3 (1997) 64-66
    • (1997) IEEE Spectrum , vol.34 , Issue.3 , pp. 64-66
    • Yale, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.