-
1
-
-
0028135264
-
Interpretation of automated perimetry for glaucoma by neural network
-
Goldbaum MH, Sample PA, White H, et al. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci. 1994;35:3362-3373.
-
(1994)
Invest Ophthalmol Vis Sci
, vol.35
, pp. 3362-3373
-
-
Goldbaum, M.H.1
Sample, P.A.2
White, H.3
-
2
-
-
0036138639
-
Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
-
Goldbaum MH, Sample PA, Chan K, et al. Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci. 2002;43:162-169.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 162-169
-
-
Goldbaum, M.H.1
Sample, P.A.2
Chan, K.3
-
3
-
-
0028245932
-
Visual field interpretation with a personal computer based neural network
-
Mutlukan E, Keating D. Visual field interpretation with a personal computer based neural network. Eye. 1994;8:321-323.
-
(1994)
Eye
, vol.8
, pp. 321-323
-
-
Mutlukan, E.1
Keating, D.2
-
4
-
-
32944476589
-
Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields
-
Bengtsson B, Bizios D, Heijl A. Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005;46:3730-3736.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 3730-3736
-
-
Bengtsson, B.1
Bizios, D.2
Heijl, A.3
-
5
-
-
0033071624
-
Neural networks for visual field analysis: How do they compare with other algorithms?
-
Lietman T, Eng J, Katz J, Quigley HA. Neural networks for visual field analysis: how do they compare with other algorithms? J Glaucoma. 1999;8:77-80.
-
(1999)
J Glaucoma
, vol.8
, pp. 77-80
-
-
Lietman, T.1
Eng, J.2
Katz, J.3
Quigley, H.A.4
-
6
-
-
0031170936
-
Artificial neural network analysis of noisy visual field data in glaucoma
-
Henson DB, Spenceley SE, Bull DR. Artificial neural network analysis of noisy visual field data in glaucoma. Artif Intell Med. 1997;10:99-113.
-
(1997)
Artif Intell Med
, vol.10
, pp. 99-113
-
-
Henson, D.B.1
Spenceley, S.E.2
Bull, D.R.3
-
8
-
-
0029866233
-
Neural networks to identify glaucoma with structural and functional measurements
-
Brigatti L, Hoffman D, Caprioli J. Neural networks to identify glaucoma with structural and functional measurements. Am J Ophthalmol. 1996;121:511-521.
-
(1996)
Am J Ophthalmol
, vol.121
, pp. 511-521
-
-
Brigatti, L.1
Hoffman, D.2
Caprioli, J.3
-
9
-
-
0036846761
-
Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc
-
Bowd C, Chan K, Zangwill LM, et al. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci. 2002;43:3444-3454.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 3444-3454
-
-
Bowd, C.1
Chan, K.2
Zangwill, L.M.3
-
10
-
-
33644673457
-
Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography
-
Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46:4121-4129.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 4121-4129
-
-
Huang, M.L.1
Chen, H.Y.2
-
11
-
-
39349103568
-
Diagnostic support for glaucoma using retinal images: A hybrid image analysis and data mining approach
-
Yu J, Abidi SS, Artes P, McIntyre A, Heywood M. Diagnostic support for glaucoma using retinal images: a hybrid image analysis and data mining approach. Stud Health Technol Inform. 2005;116:187-192.
-
(2005)
Stud Health Technol Inform
, vol.116
, pp. 187-192
-
-
Yu, J.1
Abidi, S.S.2
Artes, P.3
McIntyre, A.4
Heywood, M.5
-
13
-
-
33644701046
-
Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study
-
Burgansky-Eliash Z, Wollstein G, Chu T, et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci. 2005;46:4147-4152.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 4147-4152
-
-
Burgansky-Eliash, Z.1
Wollstein, G.2
Chu, T.3
-
14
-
-
18244383805
-
Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements
-
Bowd C, Medeiros FA, Zhang Z, et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci. 2005;46:1322-1329.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 1322-1329
-
-
Bowd, C.1
Medeiros, F.A.2
Zhang, Z.3
-
15
-
-
3242892323
-
Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects
-
Sample PA, Chan K, Boden C, et al. Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci. 2004;45:2596-2605.
-
(2004)
Invest Ophthalmol Vis Sci
, vol.45
, pp. 2596-2605
-
-
Sample, P.A.1
Chan, K.2
Boden, C.3
-
16
-
-
0029973541
-
Spatial classification of glaucomatous visual field loss
-
Henson DB, Spenceley SE, Bull DR. Spatial classification of glaucomatous visual field loss. Br J Ophthalmol. 1996;80:526-531.
-
(1996)
Br J Ophthalmol
, vol.80
, pp. 526-531
-
-
Henson, D.B.1
Spenceley, S.E.2
Bull, D.R.3
-
17
-
-
0030958701
-
Automatic detection of glaucomatous visual field progression with neural networks
-
Brigatti L, Nouri-Mahdavi K, Weitzman M, Caprioli J. Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol. 1997;115:725-728.
-
(1997)
Arch Ophthalmol
, vol.115
, pp. 725-728
-
-
Brigatti, L.1
Nouri-Mahdavi, K.2
Weitzman, M.3
Caprioli, J.4
-
19
-
-
19344369418
-
A spatio-temporal Bayesian network classifier for understanding visual field deterioration
-
Tucker A, Vinciotti V, Liu X, Garway-Heath D. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med. 2005;34:163-177.
-
(2005)
Artif Intell Med
, vol.34
, pp. 163-177
-
-
Tucker, A.1
Vinciotti, V.2
Liu, X.3
Garway-Heath, D.4
-
20
-
-
0028116524
-
Demonstration of a neural network expert system for recognition of glaucomatous visual field changes
-
Madsen EM, Yolton RL. Demonstration of a neural network expert system for recognition of glaucomatous visual field changes. Mil Med. 1994;159:553-557.
-
(1994)
Mil Med
, vol.159
, pp. 553-557
-
-
Madsen, E.M.1
Yolton, R.L.2
-
22
-
-
0032052173
-
Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal laser ophthalmoscopy
-
Anton A, Yamagishi N, Zangwill L, Sample P, Weinreb R. Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal laser ophthalmoscopy. Am J Ophthalmol. 1998;125:436-446.
-
(1998)
Am J Ophthalmol
, vol.125
, pp. 436-446
-
-
Anton, A.1
Yamagishi, N.2
Zangwill, L.3
Sample, P.4
Weinreb, R.5
-
23
-
-
0033278395
-
Spatial relationship of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy
-
Bosworth CF, Sample P, Williams JM, Zangwill L, Lee B, Weinreb RN. Spatial relationship of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy. J Glaucoma. 1999;8:281-289.
-
(1999)
J Glaucoma
, vol.8
, pp. 281-289
-
-
Bosworth, C.F.1
Sample, P.2
Williams, J.M.3
Zangwill, L.4
Lee, B.5
Weinreb, R.N.6
-
24
-
-
0030922693
-
Mapping structural damage of the optic disk to visual field defect in glaucoma
-
Yamagishi N, Anton A, Sample PA, Zangwill L, Lopez A, Weinreb RN. Mapping structural damage of the optic disk to visual field defect in glaucoma. Am J Ophthalmol. 1997;123:667-676.
-
(1997)
Am J Ophthalmol
, vol.123
, pp. 667-676
-
-
Yamagishi, N.1
Anton, A.2
Sample, P.A.3
Zangwill, L.4
Lopez, A.5
Weinreb, R.N.6
-
26
-
-
0027466024
-
Sectorization of the central 30 degrees visual field in glaucoma
-
Suzuki Y, Araie M, Ohashi Y. Sectorization of the central 30 degrees visual field in glaucoma. Ophthalmology. 1993;100:69-75.
-
(1993)
Ophthalmology
, vol.100
, pp. 69-75
-
-
Suzuki, Y.1
Araie, M.2
Ohashi, Y.3
-
27
-
-
0035050387
-
Mathematical and optimal clustering of test points of the central 30-degree visual field of glaucoma
-
Suzuki Y, Kitazawa Y, Araie M, et al. Mathematical and optimal clustering of test points of the central 30-degree visual field of glaucoma. J Glaucoma. 2001;10:121-128.
-
(2001)
J Glaucoma
, vol.10
, pp. 121-128
-
-
Suzuki, Y.1
Kitazawa, Y.2
Araie, M.3
-
28
-
-
0020083615
-
Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors
-
Wirtschafter JD, Becker WL, Howe JB, Younge BR. Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors. Ophthalmology. 1982;89:255-267.
-
(1982)
Ophthalmology
, vol.89
, pp. 255-267
-
-
Wirtschafter, J.D.1
Becker, W.L.2
Howe, J.B.3
Younge, B.R.4
-
29
-
-
0025000859
-
The topographical relationship between optic disc and visual field in glaucoma
-
Weber J, Dannheim F, Dannheim D. The topographical relationship between optic disc and visual field in glaucoma. Acta Ophthalmol. 1990;68:568-574.
-
(1990)
Acta Ophthalmol
, vol.68
, pp. 568-574
-
-
Weber, J.1
Dannheim, F.2
Dannheim, D.3
-
30
-
-
0026717105
-
Glaucoma Hemifield Test: Automated visual field evaluation
-
Asman P, Heijl A. Glaucoma Hemifield Test: automated visual field evaluation. Arch Ophthalmol. 1992;110:812-819.
-
(1992)
Arch Ophthalmol
, vol.110
, pp. 812-819
-
-
Asman, P.1
Heijl, A.2
-
31
-
-
32944475991
-
Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects
-
Goldbaum MH, Sample PA, Zhang Z, et al. Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci. 2005;46:3676-3683.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 3676-3683
-
-
Goldbaum, M.H.1
Sample, P.A.2
Zhang, Z.3
-
32
-
-
29944442558
-
Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields
-
Sample PA, Boden C, Zhang Z, et al. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005;46:3684-3692.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 3684-3692
-
-
Sample, P.A.1
Boden, C.2
Zhang, Z.3
-
33
-
-
0026708189
-
Evaluation of methods for automated Hemifield analysis in perimetry
-
Asman P, Heijl A. Evaluation of methods for automated Hemifield analysis in perimetry. Arch Ophthalmol. 1992;110:820-826.
-
(1992)
Arch Ophthalmol
, vol.110
, pp. 820-826
-
-
Asman, P.1
Heijl, A.2
-
34
-
-
39349102679
-
-
Heijl A, Lindgren G, Lindgren A, et al. Extended empirical statistical package for evaluation of single and multiple fields in glaucoma: Statpac 2. In: Mills RP, Heijl A, eds. Perimetry Update. Amsterdam: Kugler Publications; 1990;91:303-315.
-
Heijl A, Lindgren G, Lindgren A, et al. Extended empirical statistical package for evaluation of single and multiple fields in glaucoma: Statpac 2. In: Mills RP, Heijl A, eds. Perimetry Update. Amsterdam: Kugler Publications; 1990;91:303-315.
-
-
-
-
35
-
-
0036288175
-
Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma
-
Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA. Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2213-2220.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 2213-2220
-
-
Garway-Heath, D.F.1
Holder, G.E.2
Fitzke, F.W.3
Hitchings, R.A.4
-
36
-
-
3142579190
-
Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes
-
Bowd C, Zangwill LM, Medeiros FA, et al. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest Ophthalmol Vis Sci. 2004;45:2255-2262.
-
(2004)
Invest Ophthalmol Vis Sci
, vol.45
, pp. 2255-2262
-
-
Bowd, C.1
Zangwill, L.M.2
Medeiros, F.A.3
-
37
-
-
0036721272
-
Comparison of machine learning and traditional classifiers in glaucoma diagnosis
-
Chan K, Lee TW, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng. 2002;49:963-974.
-
(2002)
IEEE Trans Biomed Eng
, vol.49
, pp. 963-974
-
-
Chan, K.1
Lee, T.W.2
Sample, P.A.3
Goldbaum, M.H.4
Weinreb, R.N.5
Sejnowski, T.J.6
-
38
-
-
0036325049
-
Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields
-
Sample PA, Goldbaum MH, Chan K, et al. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci. 2002;43:2660-2665.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 2660-2665
-
-
Sample, P.A.1
Goldbaum, M.H.2
Chan, K.3
-
39
-
-
4344713313
-
Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers
-
Zangwill LM, Chan K, Bowd C, et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci. 2004;45:3144-3151.
-
(2004)
Invest Ophthalmol Vis Sci
, vol.45
, pp. 3144-3151
-
-
Zangwill, L.M.1
Chan, K.2
Bowd, C.3
-
40
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Vapnik V, Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 2000;12:2013-2036.
-
(2000)
Neural Comput
, vol.12
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
44
-
-
85105809948
-
Inductive learning algorithms and representations for text categorization
-
Gardarin G, French J, Pissinou N, Makki K, Bouganim L, eds, New York;
-
Dumais ST, Platt JC, Heckerman D, Sahami M. Inductive learning algorithms and representations for text categorization. In: Gardarin G, French J, Pissinou N, Makki K, Bouganim L, eds. Proceedings of CIKM '98 7th International Conference on Information and Knowledge Management. New York; 1998:148-155.
-
(1998)
Proceedings of CIKM '98 7th International Conference on Information and Knowledge Management
, pp. 148-155
-
-
Dumais, S.T.1
Platt, J.C.2
Heckerman, D.3
Sahami, M.4
-
45
-
-
0000684645
-
Breast cancer diagnosis and prognosis via linear programming
-
Mangasarian OL, Street WN, Wolberg WH. Breast cancer diagnosis and prognosis via linear programming. Oper Res. 1995;43:570-577.
-
(1995)
Oper Res
, vol.43
, pp. 570-577
-
-
Mangasarian, O.L.1
Street, W.N.2
Wolberg, W.H.3
-
46
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26:5-14.
-
(2001)
Comput Chem
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
47
-
-
0242317873
-
Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes
-
El Beltagi TA, Bowd C, Boden C, et al. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology. 2003;110:2185-2191.
-
(2003)
Ophthalmology
, vol.110
, pp. 2185-2191
-
-
El Beltagi, T.A.1
Bowd, C.2
Boden, C.3
-
48
-
-
0028864556
-
Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma
-
Weinreb RN, Shakiba S, Sample PA, et al. Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma. Am J Ophthalmol. 1995;120:732-738.
-
(1995)
Am J Ophthalmol
, vol.120
, pp. 732-738
-
-
Weinreb, R.N.1
Shakiba, S.2
Sample, P.A.3
-
49
-
-
84942928268
-
Detecting progression in glaucoma using data mining techniques
-
Hong Kong;
-
Turpin A, Frank E, Hall M, Witten IH, Johnson CA. Detecting progression in glaucoma using data mining techniques. The 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). Hong Kong; 2001:136-147.
-
(2001)
The 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
, pp. 136-147
-
-
Turpin, A.1
Frank, E.2
Hall, M.3
Witten, I.H.4
Johnson, C.A.5
-
50
-
-
0025810554
-
A perimetric nerve fiber bundle map
-
Weber J, Ulrich H. A perimetric nerve fiber bundle map. Int Ophthalmol. 1991;15:193-200.
-
(1991)
Int Ophthalmol
, vol.15
, pp. 193-200
-
-
Weber, J.1
Ulrich, H.2
|