메뉴 건너뛰기




Volumn 48, Issue 12, 2007, Pages 5582-5590

Assessing visual field clustering schemes using machine learning classifiers in standard perimetry

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; AGED; ARTICLE; CLUSTER ANALYSIS; CONTROLLED STUDY; DISCRIMINANT ANALYSIS; FEMALE; GLAUCOMA; HUMAN; KERNEL METHOD; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; PERIMETRY; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; VISUAL FIELD; VISUAL FIELD DEFECT; AREA UNDER THE CURVE; ARTIFICIAL INTELLIGENCE; COMPARATIVE STUDY; COMPUTER ASSISTED DIAGNOSIS; INTRAOCULAR PRESSURE; METHODOLOGY; MIDDLE AGED; OPTIC NERVE DISEASE; PHOTOGRAPHY; ROC CURVE; VISUAL DISORDER;

EID: 38549104188     PISSN: 01460404     EISSN: None     Source Type: Journal    
DOI: 10.1167/iovs.06-0897     Document Type: Article
Times cited : (13)

References (51)
  • 1
    • 0028135264 scopus 로고
    • Interpretation of automated perimetry for glaucoma by neural network
    • Goldbaum MH, Sample PA, White H, et al. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci. 1994;35:3362-3373.
    • (1994) Invest Ophthalmol Vis Sci , vol.35 , pp. 3362-3373
    • Goldbaum, M.H.1    Sample, P.A.2    White, H.3
  • 2
    • 0036138639 scopus 로고    scopus 로고
    • Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
    • Goldbaum MH, Sample PA, Chan K, et al. Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci. 2002;43:162-169.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 162-169
    • Goldbaum, M.H.1    Sample, P.A.2    Chan, K.3
  • 3
    • 0028245932 scopus 로고
    • Visual field interpretation with a personal computer based neural network
    • Mutlukan E, Keating D. Visual field interpretation with a personal computer based neural network. Eye. 1994;8:321-323.
    • (1994) Eye , vol.8 , pp. 321-323
    • Mutlukan, E.1    Keating, D.2
  • 4
    • 32944476589 scopus 로고    scopus 로고
    • Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields
    • Bengtsson B, Bizios D, Heijl A. Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005;46:3730-3736.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 3730-3736
    • Bengtsson, B.1    Bizios, D.2    Heijl, A.3
  • 5
    • 0033071624 scopus 로고    scopus 로고
    • Neural networks for visual field analysis: How do they compare with other algorithms?
    • Lietman T, Eng J, Katz J, Quigley HA. Neural networks for visual field analysis: how do they compare with other algorithms? J Glaucoma. 1999;8:77-80.
    • (1999) J Glaucoma , vol.8 , pp. 77-80
    • Lietman, T.1    Eng, J.2    Katz, J.3    Quigley, H.A.4
  • 6
    • 0031170936 scopus 로고    scopus 로고
    • Artificial neural network analysis of noisy visual field data in glaucoma
    • Henson DB, Spenceley SE, Bull DR. Artificial neural network analysis of noisy visual field data in glaucoma. Artif Intell Med. 1997;10:99-113.
    • (1997) Artif Intell Med , vol.10 , pp. 99-113
    • Henson, D.B.1    Spenceley, S.E.2    Bull, D.R.3
  • 8
    • 0029866233 scopus 로고    scopus 로고
    • Neural networks to identify glaucoma with structural and functional measurements
    • Brigatti L, Hoffman D, Caprioli J. Neural networks to identify glaucoma with structural and functional measurements. Am J Ophthalmol. 1996;121:511-521.
    • (1996) Am J Ophthalmol , vol.121 , pp. 511-521
    • Brigatti, L.1    Hoffman, D.2    Caprioli, J.3
  • 9
    • 0036846761 scopus 로고    scopus 로고
    • Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc
    • Bowd C, Chan K, Zangwill LM, et al. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci. 2002;43:3444-3454.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 3444-3454
    • Bowd, C.1    Chan, K.2    Zangwill, L.M.3
  • 10
    • 33644673457 scopus 로고    scopus 로고
    • Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography
    • Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46:4121-4129.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 4121-4129
    • Huang, M.L.1    Chen, H.Y.2
  • 11
    • 39349103568 scopus 로고    scopus 로고
    • Diagnostic support for glaucoma using retinal images: A hybrid image analysis and data mining approach
    • Yu J, Abidi SS, Artes P, McIntyre A, Heywood M. Diagnostic support for glaucoma using retinal images: a hybrid image analysis and data mining approach. Stud Health Technol Inform. 2005;116:187-192.
    • (2005) Stud Health Technol Inform , vol.116 , pp. 187-192
    • Yu, J.1    Abidi, S.S.2    Artes, P.3    McIntyre, A.4    Heywood, M.5
  • 13
    • 33644701046 scopus 로고    scopus 로고
    • Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study
    • Burgansky-Eliash Z, Wollstein G, Chu T, et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci. 2005;46:4147-4152.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 4147-4152
    • Burgansky-Eliash, Z.1    Wollstein, G.2    Chu, T.3
  • 14
    • 18244383805 scopus 로고    scopus 로고
    • Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements
    • Bowd C, Medeiros FA, Zhang Z, et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci. 2005;46:1322-1329.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 1322-1329
    • Bowd, C.1    Medeiros, F.A.2    Zhang, Z.3
  • 15
    • 3242892323 scopus 로고    scopus 로고
    • Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects
    • Sample PA, Chan K, Boden C, et al. Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci. 2004;45:2596-2605.
    • (2004) Invest Ophthalmol Vis Sci , vol.45 , pp. 2596-2605
    • Sample, P.A.1    Chan, K.2    Boden, C.3
  • 16
    • 0029973541 scopus 로고    scopus 로고
    • Spatial classification of glaucomatous visual field loss
    • Henson DB, Spenceley SE, Bull DR. Spatial classification of glaucomatous visual field loss. Br J Ophthalmol. 1996;80:526-531.
    • (1996) Br J Ophthalmol , vol.80 , pp. 526-531
    • Henson, D.B.1    Spenceley, S.E.2    Bull, D.R.3
  • 17
    • 0030958701 scopus 로고    scopus 로고
    • Automatic detection of glaucomatous visual field progression with neural networks
    • Brigatti L, Nouri-Mahdavi K, Weitzman M, Caprioli J. Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol. 1997;115:725-728.
    • (1997) Arch Ophthalmol , vol.115 , pp. 725-728
    • Brigatti, L.1    Nouri-Mahdavi, K.2    Weitzman, M.3    Caprioli, J.4
  • 18
    • 0037216716 scopus 로고    scopus 로고
    • Neural networks to identify glaucomatous visual field progression
    • Lin A, Hoffman D, Gaasterland DE, Caprioli J. Neural networks to identify glaucomatous visual field progression. Am J Ophthalmol. 2003;135:49-54.
    • (2003) Am J Ophthalmol , vol.135 , pp. 49-54
    • Lin, A.1    Hoffman, D.2    Gaasterland, D.E.3    Caprioli, J.4
  • 19
    • 19344369418 scopus 로고    scopus 로고
    • A spatio-temporal Bayesian network classifier for understanding visual field deterioration
    • Tucker A, Vinciotti V, Liu X, Garway-Heath D. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med. 2005;34:163-177.
    • (2005) Artif Intell Med , vol.34 , pp. 163-177
    • Tucker, A.1    Vinciotti, V.2    Liu, X.3    Garway-Heath, D.4
  • 20
    • 0028116524 scopus 로고
    • Demonstration of a neural network expert system for recognition of glaucomatous visual field changes
    • Madsen EM, Yolton RL. Demonstration of a neural network expert system for recognition of glaucomatous visual field changes. Mil Med. 1994;159:553-557.
    • (1994) Mil Med , vol.159 , pp. 553-557
    • Madsen, E.M.1    Yolton, R.L.2
  • 22
    • 0032052173 scopus 로고    scopus 로고
    • Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal laser ophthalmoscopy
    • Anton A, Yamagishi N, Zangwill L, Sample P, Weinreb R. Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal laser ophthalmoscopy. Am J Ophthalmol. 1998;125:436-446.
    • (1998) Am J Ophthalmol , vol.125 , pp. 436-446
    • Anton, A.1    Yamagishi, N.2    Zangwill, L.3    Sample, P.4    Weinreb, R.5
  • 23
    • 0033278395 scopus 로고    scopus 로고
    • Spatial relationship of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy
    • Bosworth CF, Sample P, Williams JM, Zangwill L, Lee B, Weinreb RN. Spatial relationship of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy. J Glaucoma. 1999;8:281-289.
    • (1999) J Glaucoma , vol.8 , pp. 281-289
    • Bosworth, C.F.1    Sample, P.2    Williams, J.M.3    Zangwill, L.4    Lee, B.5    Weinreb, R.N.6
  • 25
    • 0027421076 scopus 로고
    • An evaluation of clusters in the glaucomatous visual field
    • Mandava S, Zulauf M, Zeyen T, Caprioli J. An evaluation of clusters in the glaucomatous visual field. Am J Ophthalmol. 1993;116:684-691.
    • (1993) Am J Ophthalmol , vol.116 , pp. 684-691
    • Mandava, S.1    Zulauf, M.2    Zeyen, T.3    Caprioli, J.4
  • 26
    • 0027466024 scopus 로고
    • Sectorization of the central 30 degrees visual field in glaucoma
    • Suzuki Y, Araie M, Ohashi Y. Sectorization of the central 30 degrees visual field in glaucoma. Ophthalmology. 1993;100:69-75.
    • (1993) Ophthalmology , vol.100 , pp. 69-75
    • Suzuki, Y.1    Araie, M.2    Ohashi, Y.3
  • 27
    • 0035050387 scopus 로고    scopus 로고
    • Mathematical and optimal clustering of test points of the central 30-degree visual field of glaucoma
    • Suzuki Y, Kitazawa Y, Araie M, et al. Mathematical and optimal clustering of test points of the central 30-degree visual field of glaucoma. J Glaucoma. 2001;10:121-128.
    • (2001) J Glaucoma , vol.10 , pp. 121-128
    • Suzuki, Y.1    Kitazawa, Y.2    Araie, M.3
  • 28
    • 0020083615 scopus 로고
    • Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors
    • Wirtschafter JD, Becker WL, Howe JB, Younge BR. Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors. Ophthalmology. 1982;89:255-267.
    • (1982) Ophthalmology , vol.89 , pp. 255-267
    • Wirtschafter, J.D.1    Becker, W.L.2    Howe, J.B.3    Younge, B.R.4
  • 29
    • 0025000859 scopus 로고
    • The topographical relationship between optic disc and visual field in glaucoma
    • Weber J, Dannheim F, Dannheim D. The topographical relationship between optic disc and visual field in glaucoma. Acta Ophthalmol. 1990;68:568-574.
    • (1990) Acta Ophthalmol , vol.68 , pp. 568-574
    • Weber, J.1    Dannheim, F.2    Dannheim, D.3
  • 30
    • 0026717105 scopus 로고
    • Glaucoma Hemifield Test: Automated visual field evaluation
    • Asman P, Heijl A. Glaucoma Hemifield Test: automated visual field evaluation. Arch Ophthalmol. 1992;110:812-819.
    • (1992) Arch Ophthalmol , vol.110 , pp. 812-819
    • Asman, P.1    Heijl, A.2
  • 31
    • 32944475991 scopus 로고    scopus 로고
    • Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects
    • Goldbaum MH, Sample PA, Zhang Z, et al. Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci. 2005;46:3676-3683.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 3676-3683
    • Goldbaum, M.H.1    Sample, P.A.2    Zhang, Z.3
  • 32
    • 29944442558 scopus 로고    scopus 로고
    • Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields
    • Sample PA, Boden C, Zhang Z, et al. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005;46:3684-3692.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 3684-3692
    • Sample, P.A.1    Boden, C.2    Zhang, Z.3
  • 33
    • 0026708189 scopus 로고
    • Evaluation of methods for automated Hemifield analysis in perimetry
    • Asman P, Heijl A. Evaluation of methods for automated Hemifield analysis in perimetry. Arch Ophthalmol. 1992;110:820-826.
    • (1992) Arch Ophthalmol , vol.110 , pp. 820-826
    • Asman, P.1    Heijl, A.2
  • 34
    • 39349102679 scopus 로고    scopus 로고
    • Heijl A, Lindgren G, Lindgren A, et al. Extended empirical statistical package for evaluation of single and multiple fields in glaucoma: Statpac 2. In: Mills RP, Heijl A, eds. Perimetry Update. Amsterdam: Kugler Publications; 1990;91:303-315.
    • Heijl A, Lindgren G, Lindgren A, et al. Extended empirical statistical package for evaluation of single and multiple fields in glaucoma: Statpac 2. In: Mills RP, Heijl A, eds. Perimetry Update. Amsterdam: Kugler Publications; 1990;91:303-315.
  • 35
    • 0036288175 scopus 로고    scopus 로고
    • Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma
    • Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA. Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2213-2220.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 2213-2220
    • Garway-Heath, D.F.1    Holder, G.E.2    Fitzke, F.W.3    Hitchings, R.A.4
  • 36
    • 3142579190 scopus 로고    scopus 로고
    • Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes
    • Bowd C, Zangwill LM, Medeiros FA, et al. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest Ophthalmol Vis Sci. 2004;45:2255-2262.
    • (2004) Invest Ophthalmol Vis Sci , vol.45 , pp. 2255-2262
    • Bowd, C.1    Zangwill, L.M.2    Medeiros, F.A.3
  • 38
    • 0036325049 scopus 로고    scopus 로고
    • Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields
    • Sample PA, Goldbaum MH, Chan K, et al. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci. 2002;43:2660-2665.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 2660-2665
    • Sample, P.A.1    Goldbaum, M.H.2    Chan, K.3
  • 39
    • 4344713313 scopus 로고    scopus 로고
    • Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers
    • Zangwill LM, Chan K, Bowd C, et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci. 2004;45:3144-3151.
    • (2004) Invest Ophthalmol Vis Sci , vol.45 , pp. 3144-3151
    • Zangwill, L.M.1    Chan, K.2    Bowd, C.3
  • 40
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik V, Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 2000;12:2013-2036.
    • (2000) Neural Comput , vol.12 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 45
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • Mangasarian OL, Street WN, Wolberg WH. Breast cancer diagnosis and prognosis via linear programming. Oper Res. 1995;43:570-577.
    • (1995) Oper Res , vol.43 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 46
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26:5-14.
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 47
    • 0242317873 scopus 로고    scopus 로고
    • Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes
    • El Beltagi TA, Bowd C, Boden C, et al. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology. 2003;110:2185-2191.
    • (2003) Ophthalmology , vol.110 , pp. 2185-2191
    • El Beltagi, T.A.1    Bowd, C.2    Boden, C.3
  • 48
    • 0028864556 scopus 로고
    • Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma
    • Weinreb RN, Shakiba S, Sample PA, et al. Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma. Am J Ophthalmol. 1995;120:732-738.
    • (1995) Am J Ophthalmol , vol.120 , pp. 732-738
    • Weinreb, R.N.1    Shakiba, S.2    Sample, P.A.3
  • 50
    • 0025810554 scopus 로고
    • A perimetric nerve fiber bundle map
    • Weber J, Ulrich H. A perimetric nerve fiber bundle map. Int Ophthalmol. 1991;15:193-200.
    • (1991) Int Ophthalmol , vol.15 , pp. 193-200
    • Weber, J.1    Ulrich, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.