메뉴 건너뛰기




Volumn 4669 LNCS, Issue PART 2, 2007, Pages 271-280

Unbiased SVM density estimation with application to graphical pattern recognition

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; GRAPHIC METHODS; PATTERN RECOGNITION;

EID: 38349045506     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-74695-9_28     Document Type: Conference Paper
Times cited : (3)

References (14)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult (Special Issue on Recurrent Neural Networks, March 94)
    • Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult (Special Issue on Recurrent Neural Networks, March 94). IEEE Transactions on Neural Networks 5(2), 157-166 (1994)
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 2
    • 11944253901 scopus 로고    scopus 로고
    • 2nd edn. Cambridge University Press, Cambridge, UK
    • Bollobs, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge, UK (2001)
    • (2001) Random Graphs
    • Bollobs, B.1
  • 3
    • 10444283488 scopus 로고    scopus 로고
    • Unsupervised optimization of support vector machine parameters
    • Sadjadi, F.A, ed
    • Cassabaum, M.L., Waagen, D.E., Rodríguez, J.J., Schmitt, H.A.: Unsupervised optimization of support vector machine parameters. In: Sadjadi, F.A. (ed.) Proc. of SPIE, vol. 5426, pp. 316-325 (2004)
    • (2004) Proc. of SPIE , vol.5426 , pp. 316-325
    • Cassabaum, M.L.1    Waagen, D.E.2    Rodríguez, J.J.3    Schmitt, H.A.4
  • 4
    • 38049118136 scopus 로고    scopus 로고
    • A comparison between recursive neural networks and graph neural networks. World Congr. on Comp
    • 7825
    • Di Massa, V., Monfardini, G., Sarti, L., Scarselli, F., Maggini, M., Gori, M.: A comparison between recursive neural networks and graph neural networks. World Congr. on Comp. Intelligence, 778-7825 (2006)
    • (2006) Intelligence , vol.778
    • Di Massa, V.1    Monfardini, G.2    Sarti, L.3    Scarselli, F.4    Maggini, M.5    Gori, M.6
  • 8
    • 17444403164 scopus 로고    scopus 로고
    • Universal approximation capability of cascade correlation for structures
    • Hammer, B., Micheli, A., Sperduti, A.: Universal approximation capability of cascade correlation for structures. Neural Computation 17(5), 1109-1159 (2005)
    • (2005) Neural Computation , vol.17 , Issue.5 , pp. 1109-1159
    • Hammer, B.1    Micheli, A.2    Sperduti, A.3
  • 10
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A.J., Scholkopf, B.: A tutorial on support vector regression. Statistics and Computing 14(3), 199-222 (2004)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 11
    • 0031145983 scopus 로고    scopus 로고
    • Supervised neural networks for the classification of structures
    • Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Transactions on Neural Networks 8(3), 714-735 (1997)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 714-735
    • Sperduti, A.1    Starita, A.2
  • 13
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of small world networks
    • Watts, D., Strogatz, S.: Collective dynamics of small world networks. Nature 393, 440-442 (1998)
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.1    Strogatz, S.2
  • 14
    • 38349045663 scopus 로고    scopus 로고
    • Weston, J., Gammerman, A., Stitson, M., Vapnik, V., Vovk, V., Watkins, C.: Support vector density estimation. In: Schölkopf, B., Burges, C.J.C, Smola, A.J. (eds.) Advances in Kernel Methods -Support Vector Learning, Cambridge, MA, pp. 293-306. MIT Press, Cambridge (1999)
    • Weston, J., Gammerman, A., Stitson, M., Vapnik, V., Vovk, V., Watkins, C.: Support vector density estimation. In: Schölkopf, B., Burges, C.J.C, Smola, A.J. (eds.) Advances in Kernel Methods -Support Vector Learning, Cambridge, MA, pp. 293-306. MIT Press, Cambridge (1999)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.