메뉴 건너뛰기




Volumn 17, Issue 5, 2005, Pages 1109-1159

Universal approximation capability of cascade correlation for structures

Author keywords

[No Author keywords available]

Indexed keywords


EID: 17444403164     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/0899766053491878     Document Type: Article
Times cited : (49)

References (42)
  • 1
    • 0040973442 scopus 로고
    • An algebraic framework to represent finite state machines in single-layer recurrent neural networks
    • Alquezar, R., & Sanfeliu, A. (1995). An algebraic framework to represent finite state machines in single-layer recurrent neural networks. Neural Computation, 7(5), 931-949.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 931-949
    • Alquezar, R.1    Sanfeliu, A.2
  • 2
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and future in protein secondary structure prediction
    • Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., & Soda, G. (1999). Exploiting the past and future in protein secondary structure prediction. Bioinformatics, 25(11), 937-946.
    • (1999) Bioinformatics , vol.25 , Issue.11 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Pollastri, G.4    Soda, G.5
  • 4
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 8
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation architecture
    • R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.). San Mateo, CA: Morgan Kaufmann
    • Fahlmann, S. E. (1991). The recurrent cascade-correlation architecture. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information processing systems, 3 (pp. 190-196). San Mateo, CA: Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 190-196
    • Fahlmann, S.E.1
  • 9
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky (Ed.). Son Mateo, CA: Morgan Kaufmann
    • Fahlmann, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky (Ed.), Advances in neural information processing systems 2 (pp. 524-532). Son Mateo, CA: Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlmann, S.E.1    Lebiere, C.2
  • 10
    • 0003979694 scopus 로고
    • Learning the initial state of a second order recurrent neural network during regular language inference
    • Forcada, M. L., & Carrasco, R. C. (1995). Learning the initial state of a second order recurrent neural network during regular language inference. Neural Computation, 7(5), 923-949.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 923-949
    • Forcada, M.L.1    Carrasco, R.C.2
  • 11
    • 17444391005 scopus 로고    scopus 로고
    • Comparing convolution kernels and RNNs on a wide-coverage computational analysis of natural language
    • Frasconi, P. (2002). Comparing convolution kernels and RNNs on a wide-coverage computational analysis of natural language. NIPS 2002 workshop.
    • (2002) NIPS 2002 Workshop
    • Frasconi, P.1
  • 12
    • 0001698763 scopus 로고    scopus 로고
    • Computational capabilities of local-feedback recurrent networks acting as finite-state machines
    • Frasconi, P., & Gori, M. (1996). Computational capabilities of local-feedback recurrent networks acting as finite-state machines. IEEE Transactions on Neural Networks, 7(6), 1521-1524.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1521-1524
    • Frasconi, P.1    Gori, M.2
  • 13
    • 0032165969 scopus 로고    scopus 로고
    • A general framework of adaptive processing of data structures
    • Frasconi, P., Gori, M., & Sperduti, A. (1998). A general framework of adaptive processing of data structures. IEEE Transactions on Neural Networks, 9(5), 768-786.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.5 , pp. 768-786
    • Frasconi, P.1    Gori, M.2    Sperduti, A.3
  • 14
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • Funahashi K., & Nakamura, Y. (1993). Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks, 6(6), 801-806.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 801-806
    • Funahashi, K.1    Nakamura, Y.2
  • 15
    • 0029341578 scopus 로고
    • Constructive learning of recurrent neural networks: Limitations of recurrent cascade correlation and a simple solution
    • Giles, C. L., Chen, D., Sun, G. Z., Chen, H. H., Lee, Y. C., & Goudreau, M. W. (1995). Constructive learning of recurrent neural networks: Limitations of recurrent cascade correlation and a simple solution. IEEE Transactions on Neural Networks, 6(4), 829-836.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 829-836
    • Giles, C.L.1    Chen, D.2    Sun, G.Z.3    Chen, H.H.4    Lee, Y.C.5    Goudreau, M.W.6
  • 17
    • 0029727454 scopus 로고    scopus 로고
    • Learning task-dependent distributed structure-representations by backpropagation through structure
    • Piscataway, NJ: IEEE Computer Society Press
    • Goller, C., & Küchler, A. (1996). Learning task-dependent distributed structure-representations by backpropagation through structure. In IEEE International Conference on Neural Networks (pp. 347-352). Piscataway, NJ: IEEE Computer Society Press.
    • (1996) IEEE International Conference on Neural Networks , pp. 347-352
    • Goller, C.1    Küchler, A.2
  • 20
    • 9144232147 scopus 로고    scopus 로고
    • Perspectives on learning with recurrent neural networks
    • M. Verleysen (Ed.). Brussels: D-side Publications
    • Hammer, B., & Steil, J. J. (2002). Perspectives on learning with recurrent neural networks. In M. Verleysen (Ed.), ESANN'02 (pp. 357-368). Brussels: D-side Publications.
    • (2002) ESANN'02 , pp. 357-368
    • Hammer, B.1    Steil, J.J.2
  • 22
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
  • 24
    • 0001117376 scopus 로고    scopus 로고
    • Spatio-temporal connectionist networks: A taxonomy and review
    • Kremer, S. (2001). Spatio-temporal connectionist networks: A taxonomy and review. Neural Computation, 13(2), 249-306.
    • (2001) Neural Computation , vol.13 , Issue.2 , pp. 249-306
    • Kremer, S.1
  • 25
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for SVM protein classification
    • online
    • Leslie, C., Eskin, E., & Noble, W. (2002). The spectrum kernel: A string kernel for SVM protein classification. In Proc. Pacific Symposium on Biocomputing (pp. 564-575). Available online: http://psb.stanford.edu/psb. online/.
    • (2002) Proc. Pacific Symposium on Biocomputing , pp. 564-575
    • Leslie, C.1    Eskin, E.2    Noble, W.3
  • 26
    • 0242351997 scopus 로고    scopus 로고
    • Text classification using string kernels
    • S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.). Cambridge, MA: MIT Press
    • Lodhi, H., Shawe-Taylor, J., Cristianini, N., & Watkins, C.J.C.H. (2000). Text classification using string kernels. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in information processing systems, 12 (pp. 563-569). Cambridge, MA: MIT Press.
    • (2000) Advances in Information Processing Systems , vol.12 , pp. 563-569
    • Lodhi, H.1    Shawe-Taylor, J.2    Cristianini, N.3    Watkins, C.J.C.H.4
  • 30
    • 21144446381 scopus 로고    scopus 로고
    • Formal definition of context in contextual recursive cascade correlation networks
    • E. Alpaydin, E. Oja, & L. Xu (Eds.). Berlin: Springer
    • Micheli, A., Sona, D., & Sperduti, A. (2003). Formal definition of context in contextual recursive cascade correlation networks. In E. Alpaydin, E. Oja, & L. Xu (Eds.), Proceedings of ICANN/ICONIP 2003, LNCS 2714 (pp. 173-130). Berlin: Springer.
    • (2003) Proceedings of ICANN/ICONIP 2003, LNCS , vol.2714 , pp. 173-1130
    • Micheli, A.1    Sona, D.2    Sperduti, A.3
  • 32
    • 33144489859 scopus 로고    scopus 로고
    • Prediction of protein topologies using GIOHMMs and GRNNs
    • T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.). Cambridge, MA: MIT Press
    • Pollastri, G., Baldi, P., Vullo, A., & Frasconi, P. (2002). Prediction of protein topologies using GIOHMMs and GRNNs. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Pollastri, G.1    Baldi, P.2    Vullo, A.3    Frasconi, P.4
  • 33
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
    • Scarselli, F., & Tsoi, A. C. (1998). Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results. Neural Networks, 11, 15-37.
    • (1998) Neural Networks , vol.11 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 34
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • Sontag, E. D. (1992). Feedforward nets for interpolation and classification. Journal of Computer and System Sciences, 45, 20-48.
    • (1992) Journal of Computer and System Sciences , vol.45 , pp. 20-48
    • Sontag, E.D.1
  • 35
    • 0031128328 scopus 로고    scopus 로고
    • On the computational power of neural networks for structures
    • Sperduti, A. (1997). On the computational power of neural networks for structures. Neural Networks, 10(3), 395-400.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 395-400
    • Sperduti, A.1
  • 36
    • 84958531921 scopus 로고    scopus 로고
    • Extended cascade-correlation for syntactic and structural pattern recognition
    • P. Perner, P. Wand, & A. Rosenfeld (Eds.). New York: Springer
    • Sperduti, A., Majidi, D., & Starita, A. (1996). Extended cascade-correlation for syntactic and structural pattern recognition. In P. Perner, P. Wand, & A. Rosenfeld (Eds.), Advances in structured and syntactical pattern recognition (pp. 90-99). New York: Springer.
    • (1996) Advances in Structured and Syntactical Pattern Recognition , pp. 90-99
    • Sperduti, A.1    Majidi, D.2    Starita, A.3
  • 37
    • 0031145983 scopus 로고    scopus 로고
    • Supervised neural networks for the classification of structures
    • Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. IEEE Transactions on Neural Networks, 8(3), 714-735.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 714-735
    • Sperduti, A.1    Starita, A.2
  • 38
    • 0038392958 scopus 로고    scopus 로고
    • Learning first-pass structural attachment preferences with dynamic grammars and recursive neural networks
    • Sturt, P., Costa, F., Lombardo, V., & Frasconi, P. (2003). Learning first-pass structural attachment preferences with dynamic grammars and recursive neural networks. Cognition, 88(2), 133-169.
    • (2003) Cognition , vol.88 , Issue.2 , pp. 133-169
    • Sturt, P.1    Costa, F.2    Lombardo, V.3    Frasconi, P.4
  • 39
    • 0042708931 scopus 로고    scopus 로고
    • Introduction to sequence learning
    • R. Sun & C. L. Giles (Eds.), New York: Springer
    • Sun, R. (2001). Introduction to sequence learning. In R. Sun & C. L. Giles (Eds.), Sequence learning: Paradigms, algorithms, and applications (pp. 1-10), New York: Springer.
    • (2001) Sequence Learning: Paradigms, Algorithms, and Applications , pp. 1-10
    • Sun, R.1
  • 41
    • 0004202459 scopus 로고    scopus 로고
    • (Tech. Rep.). Royal Holloway, University of London
    • Watkins, C. (1999). Dynamic alignment kernels (Tech. Rep.). Royal Holloway, University of London.
    • (1999) Dynamic Alignment Kernels
    • Watkins, C.1
  • 42
    • 0034806831 scopus 로고    scopus 로고
    • Bi-directional computing architectures for time series prediction
    • Wakuya, H., & Zurada, J. (2001). Bi-directional computing architectures for time series prediction. Neural Networks, 14, 1307-1321.
    • (2001) Neural Networks , vol.14 , pp. 1307-1321
    • Wakuya, H.1    Zurada, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.