-
1
-
-
0032568887
-
-
(a) Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098.
-
(1998)
Science
, vol.280
, pp. 2098
-
-
Chen, S.1
Ingram, R.S.2
Hostetler, M.J.3
Pietron, J.J.4
Murray, R.W.5
Schaaff, T.G.6
Khoury, J.T.7
Alvarez, M.M.8
Whetten, R.L.9
-
3
-
-
0032976904
-
-
(c) Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T.; Schaaff, T. G.; Vezmar, I.; Alvarez, M. M.; Wilkinson, A. Acc. Chem. Res. 1999, 32, 397.
-
(1999)
Acc. Chem. Res
, vol.32
, pp. 397
-
-
Whetten, R.L.1
Shafigullin, M.N.2
Khoury, J.T.3
Schaaff, T.G.4
Vezmar, I.5
Alvarez, M.M.6
Wilkinson, A.7
-
5
-
-
0030009986
-
-
(a) Hostetler, M. J.; Green, S. J.; Stokes, J. J.; Murray, R. W. J. Am. Chem. Soc. 1996, 118, 4212.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 4212
-
-
Hostetler, M.J.1
Green, S.J.2
Stokes, J.J.3
Murray, R.W.4
-
6
-
-
0030824139
-
-
(b) Ingram, R. S.; Hostetler, M. J.; Murray, R. W. J. Am. Chem. Soc. 1997, 119, 9175.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 9175
-
-
Ingram, R.S.1
Hostetler, M.J.2
Murray, R.W.3
-
7
-
-
0033978754
-
-
(c) Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27.
-
(2000)
Acc. Chem. Res
, vol.33
, pp. 27
-
-
Templeton, A.C.1
Wuelfing, W.P.2
Murray, R.W.3
-
9
-
-
0029377984
-
-
(a) Brust, M.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Adv. Mater. 1995, 7, 795.
-
(1995)
J. Adv. Mater
, vol.7
, pp. 795
-
-
Brust, M.1
Bethell, D.2
Schiffrin, D.J.3
Kiely, C.4
-
10
-
-
15844386157
-
-
(b) Terrill, R. H.; Postlethwaite, T. A.; Chen, C.-H.; Poon, C.-D.; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G.; Londono, J. D.; Superfine, R.; Falvo, M.; Johnson, C. S., Jr.; Samulski, E. T.; Murray, R. W. J. Am. Chem. Soc. 1995, 117, 12537.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 12537
-
-
Terrill, R.H.1
Postlethwaite, T.A.2
Chen, C.-H.3
Poon, C.-D.4
Terzis, A.5
Chen, A.6
Hutchison, J.E.7
Clark, M.R.8
Wignall, G.9
Londono, J.D.10
Superfine, R.11
Falvo, M.12
Johnson Jr., C.S.13
Samulski, E.T.14
Murray, R.W.15
-
12
-
-
0035922540
-
-
(a) Sampaio, J. F.; Beverly, K. C.; Heath, J. R. J. Phys. Chem. B 2001, 105, 8797.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 8797
-
-
Sampaio, J.F.1
Beverly, K.C.2
Heath, J.R.3
-
15
-
-
0032479718
-
-
(d) Burghard, M.; Philipp, G.: Roth, S.; von Klitzing, S. K.; Pugin, R.; Schmid, G. Adv. Mater. 1998, 10, 842.
-
(1998)
Adv. Mater
, vol.10
, pp. 842
-
-
Burghard, M.1
Philipp, G.2
Roth, S.3
von Klitzing, S.K.4
Pugin, R.5
Schmid, G.6
-
18
-
-
9244227633
-
-
(c) Yao, H.; Kojima, H.; Sato, S.; Kimura, K. Langmuir 2004, 20, 10317.
-
(2004)
Langmuir
, vol.20
, pp. 10317
-
-
Yao, H.1
Kojima, H.2
Sato, S.3
Kimura, K.4
-
19
-
-
33746866722
-
-
(d) Yao, H.; Minami, T.; Hori, A.; Koma, M.; Kimura, K. J. Phys. Chem. B 2006, 110, 14040.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 14040
-
-
Yao, H.1
Minami, T.2
Hori, A.3
Koma, M.4
Kimura, K.5
-
21
-
-
0035819182
-
-
(b) Hasegawa, T.; Nishijo, J.; Imae, T.; Huo, Q.; Leblanc, R. M. J. Phys. Chem. B 2001, 105, 12056.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 12056
-
-
Hasegawa, T.1
Nishijo, J.2
Imae, T.3
Huo, Q.4
Leblanc, R.M.5
-
23
-
-
0027375113
-
-
Levy, E. J.; Anderson, M. E.; Meister, A. Anal. Biochem. 1993, 214, 135.
-
(1993)
Anal. Biochem
, vol.214
, pp. 135
-
-
Levy, E.J.1
Anderson, M.E.2
Meister, A.3
-
24
-
-
38049172026
-
-
a values (for COOH) of glutathione have been reported to be 2.12 and 3.59 (Edsall, J. T.; Wyman, J. Biophysical Chemistry; Academic Press: New York, 1958.).
-
a values (for COOH) of glutathione have been reported to be 2.12 and 3.59 (Edsall, J. T.; Wyman, J. Biophysical Chemistry; Academic Press: New York, 1958.).
-
-
-
-
25
-
-
38049118831
-
-
Hence to adjust the protonation state of the carboxyl groups in the NAG moiety, the HCI concentration in the solution was set to be 100 mM (sample-H) or 1 mM (sample-L, It is expected that the carboxyl groups are fully or partly protonated for sample-H or sample-L, respectively, b) An acidic solution may allow hydrolysis of the surface NAG molecules, but it would scarcely affect the superlattice formation on the basis of the deduction from the facts that (i) the hydrolysis of an N-acetylamino acid (N-acetylglycine) has not been observed in a highly acidic condition (pH, 1.2) at room temperature (Appleton, T. G, Bedgood, D. R, Jr, Hall, J. R. Inorg. Chem. 1994, 33, 3834, and (ii) we have revealed that gold nanoparticles protected by glutathione (N-unsubstituted hydrolysis form) did not produce superlattices under the highly acidic condition ref 7d
-
Hence to adjust the protonation state of the carboxyl groups in the NAG moiety, the HCI concentration in the solution was set to be 100 mM (sample-H) or 1 mM (sample-L). It is expected that the carboxyl groups are fully or partly protonated for sample-H or sample-L, respectively, (b) An acidic solution may allow hydrolysis of the surface NAG molecules, but it would scarcely affect the superlattice formation on the basis of the deduction from the facts that (i) the hydrolysis of an N-acetylamino acid (N-acetylglycine) has not been observed in a highly acidic condition (pH = 1.2) at room temperature (Appleton, T. G.; Bedgood, D. R., Jr.; Hall, J. R. Inorg. Chem. 1994, 33, 3834.) and (ii) we have revealed that gold nanoparticles protected by glutathione (N-unsubstituted hydrolysis form) did not produce superlattices under the highly acidic condition (ref 7d).
-
-
-
-
27
-
-
0009640296
-
-
(a) Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. B 1997, 101, 3706.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 3706
-
-
Alvarez, M.M.1
Khoury, J.T.2
Schaaff, T.G.3
Shafigullin, M.N.4
Vezmar, I.5
Whetten, R.L.6
-
28
-
-
17144403270
-
-
(b) Negishi, Y.; Nobusada, K.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 5261
-
-
Negishi, Y.1
Nobusada, K.2
Tsukuda, T.3
-
29
-
-
0033472901
-
-
(c) Gutiérrez, E.; Powell, R. D.; Furuya, F. R.; Hainfeld, J. F.; Schaaff, T. G.; Shafigullin, M. N.; Stephens, P. W.; Whetten, R. L. Eur. Phys. J. D 1999, 9, 647.
-
(1999)
Eur. Phys. J. D
, vol.9
, pp. 647
-
-
Gutiérrez, E.1
Powell, R.D.2
Furuya, F.R.3
Hainfeld, J.F.4
Schaaff, T.G.5
Shafigullin, M.N.6
Stephens, P.W.7
Whetten, R.L.8
-
30
-
-
27644549143
-
-
(d) Yao, H.; Miki, K.; Nishida, N.; Sasaki, A.; Kimura, K. J. Am. Chem. Soc. 2005, 127, 15536.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 15536
-
-
Yao, H.1
Miki, K.2
Nishida, N.3
Sasaki, A.4
Kimura, K.5
-
32
-
-
38049099626
-
-
For comparison with sample-H, seven time-evolved absorption spectra of sample-L shown in Figure 2b were analyzed by PCA. The first PCA loading yielded the average spectrum that is similar to the native one. The second PCA loading reflected the fluctuation from the NAG moiety. Although the third PCA loading might imply the change in the meta-based electronic transition region, the most emphasis can be placed on the result that the ratio of the intensity-change scale in the first through third PCA loadings was approximately 198/21/1, that is, the third abstract spectrum makes little contribution to the absorption change of sample-L note that the normalized spectral patterns were almost identical with each other, Consequently, the sample did not produce any superlattice of grown nanoparticles. See the Supporting Information for more detail
-
For comparison with sample-H, seven time-evolved absorption spectra of sample-L shown in Figure 2b were analyzed by PCA. The first PCA loading yielded the average spectrum that is similar to the native one. The second PCA loading reflected the fluctuation from the NAG moiety. Although the third PCA loading might imply the change in the meta-based electronic transition region, the most emphasis can be placed on the result that the ratio of the intensity-change scale in the first through third PCA loadings was approximately 198/21/1, that is, the third abstract spectrum makes little contribution to the absorption change of sample-L (note that the normalized spectral patterns were almost identical with each other). Consequently, the sample did not produce any superlattice of grown nanoparticles. See the Supporting Information for more detail.
-
-
-
-
33
-
-
0013196141
-
-
Ohara, P. C.; Leff, D. V.; Heath, J. R.; Gelbart, W. M. Phys. Rev. Lett. 1995, 75, 3466.
-
(1995)
Phys. Rev. Lett
, vol.75
, pp. 3466
-
-
Ohara, P.C.1
Leff, D.V.2
Heath, J.R.3
Gelbart, W.M.4
-
36
-
-
0001164789
-
-
(c) Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P. J. Phys. Chem. B 2000, 104, 564.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 564
-
-
Templeton, A.C.1
Pietron, J.J.2
Murray, R.W.3
Mulvaney, P.4
-
37
-
-
0037069487
-
-
(a) Paul, R.; Schmidt, R.; Dyer, D. J. Langmuir 2002, 18, 8719.
-
(2002)
Langmuir
, vol.18
, pp. 8719
-
-
Paul, R.1
Schmidt, R.2
Dyer, D.J.3
-
40
-
-
33744913314
-
-
(a) Hong, R.; Fernández, J. M.; Nakade, H.; Arvizo, R.; Emrick, T.; Rotello, V. M. Chem. Commun. 2006, 2347.
-
(2006)
Chem. Commun
, pp. 2347
-
-
Hong, R.1
Fernández, J.M.2
Nakade, H.3
Arvizo, R.4
Emrick, T.5
Rotello, V.M.6
-
41
-
-
0036813341
-
-
(b) Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2002, 18, 7515.
-
(2002)
Langmuir
, vol.18
, pp. 7515
-
-
Prasad, B.L.V.1
Stoeva, S.I.2
Sorensen, C.M.3
Klabunde, K.J.4
|