메뉴 건너뛰기




Volumn 4693 LNAI, Issue PART 2, 2007, Pages 493-500

Combining bagging, boosting and dagging for classification problems

Author keywords

Data mining; Ensembles of classifiers; Machine learning

Indexed keywords

BAGGING; ENSEMBLES OF CLASSIFIERS; NOISE FREE DATA; STANDARD BENCHMARK DATASETS;

EID: 38049023534     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-74827-4_62     Document Type: Conference Paper
Times cited : (50)

References (16)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36, 105-139 (1999)
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 38049026097 scopus 로고    scopus 로고
    • Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/mlearn/MLRepository.html
    • Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/mlearn/MLRepository.html
  • 3
    • 0043272902 scopus 로고    scopus 로고
    • Memory-based morphological analysis
    • University of Maryland, pp
    • Bosch, A., Daelemans, W.: Memory-based morphological analysis. In: proceedings of 37th Annual Meeting of the ACL, University of Maryland, pp. 285-292 (1999), http://ilk.kub.nl/~antalb/ltuia/week10.html
    • (1999) proceedings of 37th Annual Meeting of the ACL , pp. 285-292
    • Bosch, A.1    Daelemans, W.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L.: Bagging Predictors. Machine Learning 24(3), 123-140 (1996)
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 123-140
    • Breiman, L.1
  • 5
    • 80053403826 scopus 로고    scopus 로고
    • Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, 1857, pp. 1-15. Springer, Heidelberg (2000)
    • Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000)
  • 6
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a New Boosting Algorithm
    • Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: proceedings of ICML'96, pp. 148-156 (1996)
    • (1996) proceedings of ICML'96 , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 8
    • 8344235939 scopus 로고    scopus 로고
    • Kotsiantis, S., Pierrakeas, C., Pintelas, P.: Preventing student dropout in distance learning systems using machine learning techniques. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, 2774, pp. 267-274. Springer, Heidelberg (2003)
    • Kotsiantis, S., Pierrakeas, C., Pintelas, P.: Preventing student dropout in distance learning systems using machine learning techniques. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 267-274. Springer, Heidelberg (2003)
  • 9
    • 84880832861 scopus 로고    scopus 로고
    • Constructing Diverse Classifier Ensembles using Artificial Training Examples
    • Acapulco, Mexico, pp, August
    • Melville, P., Mooney, R.: Constructing Diverse Classifier Ensembles using Artificial Training Examples. In: proceedings of IJCAI-2003, Acapulco, Mexico, pp. 505-510 (August 2003)
    • (2003) proceedings of IJCAI-2003 , pp. 505-510
    • Melville, P.1    Mooney, R.2
  • 10
    • 0002431740 scopus 로고    scopus 로고
    • Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey
    • Murthy: Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery 2, 345-389 (1998)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 345-389
    • Murthy1
  • 11
    • 0000551189 scopus 로고    scopus 로고
    • Popular Ensemble Methods: An Empirical Study
    • Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Artificial Intelligence Research 11, 169-198 (1999)
    • (1999) Artificial Intelligence Research , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 12
    • 27144463192 scopus 로고    scopus 로고
    • On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach
    • Salzberg, S.: On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Mining and Knowledge Discovery 1, 317-328 (1997)
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, S.1
  • 13
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics 26, 1651-1686 (1998)
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 15
    • 0034247206 scopus 로고    scopus 로고
    • Webb, G.I.: MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning 40, 159-196 (2000)
    • Webb, G.I.: MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning 40, 159-196 (2000)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.