-
2
-
-
0029914227
-
-
Herrera, J. E.; Correia, J. J.; Jones, A. E.; Olson, M. O. Biochemistry 1996, 35, 2668-2673.
-
(1996)
Biochemistry
, vol.35
, pp. 2668-2673
-
-
Herrera, J.E.1
Correia, J.J.2
Jones, A.E.3
Olson, M.O.4
-
3
-
-
1242274330
-
-
Draper, D. E. RNA 2004, 10, 335-343.
-
(2004)
RNA
, vol.10
, pp. 335-343
-
-
Draper, D.E.1
-
4
-
-
0024580271
-
-
Jayaram, B.; Sharp, K. A.; Honig, B. Biopolymers 1989, 28, 975-993.
-
(1989)
Biopolymers
, vol.28
, pp. 975-993
-
-
Jayaram, B.1
Sharp, K.A.2
Honig, B.3
-
5
-
-
12844260994
-
-
Bai, Y.; Das, R.; Millett, I. S.; Herschlag, D.; Doniach, S. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 1035-1040.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A
, vol.102
, pp. 1035-1040
-
-
Bai, Y.1
Das, R.2
Millett, I.S.3
Herschlag, D.4
Doniach, S.5
-
11
-
-
0032896707
-
-
Pack, G. R.; Wong, L.; Lamm, G. Biopolymers 1999, 49, 575-590.
-
(1999)
Biopolymers
, vol.49
, pp. 575-590
-
-
Pack, G.R.1
Wong, L.2
Lamm, G.3
-
12
-
-
0346676554
-
-
Quesada-Perez, M.; Gonzalez-Tovar, E.; Martin-Molina, A.; Lozada-Cassou, M.; Hidalgo-Alvarez, R. ChemPhysChem 2003, 4, 234-248.
-
(2003)
ChemPhysChem
, vol.4
, pp. 234-248
-
-
Quesada-Perez, M.1
Gonzalez-Tovar, E.2
Martin-Molina, A.3
Lozada-Cassou, M.4
Hidalgo-Alvarez, R.5
-
14
-
-
0035964342
-
-
Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 10037-10041.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A
, vol.98
, pp. 10037-10041
-
-
Baker, N.A.1
Sept, D.2
Joseph, S.3
Holst, M.J.4
McCammon, J.A.5
-
16
-
-
0036055199
-
-
Grosberg, A. Y.; Nguyen, T. T.; Shklovskii, B. I. Rev. Mod. Phys. 2002, 74, 329-345.
-
(2002)
Rev. Mod. Phys
, vol.74
, pp. 329-345
-
-
Grosberg, A.Y.1
Nguyen, T.T.2
Shklovskii, B.I.3
-
21
-
-
36849032397
-
-
For salt-dependent folding or ligand-binding reactions, ion-binding isotherms have typically been fit to a polynomial binding model based on the simple mass action equilibrium. However, this equilibrium is not a physical description of the long-range electrostatic interactions governing the behavior of the ion atmosphere. Further, the exclusion of anions is typically neglected in these analyses, a condition that is only satisfied for very low salt concentration (0.01 M, refs 9, 20).
-
For salt-dependent folding or ligand-binding reactions, ion-binding isotherms have typically been fit to a polynomial binding model based on the simple mass action equilibrium. However, this equilibrium is not a physical description of the long-range electrostatic interactions governing the behavior of the ion atmosphere. Further, the exclusion of anions is typically neglected in these analyses, a condition that is only satisfied for very low salt concentration (0.01 M, refs 9, 20).
-
-
-
-
23
-
-
36849004587
-
-
+ ions in the atmosphere may be close enough to experience relaxation from the DNA but others may not be. Further, the ion distribution can change with ionic conditions. Quantitatively comparing results over a series of conditions is difficult.
-
+ ions in the atmosphere may be close enough to experience relaxation from the DNA but others may not be. Further, the ion distribution can change with ionic conditions. Quantitatively comparing results over a series of conditions is difficult.
-
-
-
-
24
-
-
33749032381
-
-
Grilley, D.; Soto, A. M.; Draper, D. E. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 14003-14008.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A
, vol.103
, pp. 14003-14008
-
-
Grilley, D.1
Soto, A.M.2
Draper, D.E.3
-
27
-
-
20444496846
-
-
Das, R.; Travers, K. J.; Bai, Y.; Herschlag, D. J. Am. Chem. Soc. 2005, 127, 8272-8273.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 8272-8273
-
-
Das, R.1
Travers, K.J.2
Bai, Y.3
Herschlag, D.4
-
28
-
-
36849078974
-
-
Dye association has complex thermodynamics as neutral dye-indicators may bind to metal ions that are free or part of the ion atmosphere, although presumably there is partial or extensive exclusion of the dye-bound metal ion from the atmosphere because of the preference for smaller cations in the atmosphere
-
Dye association has complex thermodynamics as neutral dye-indicators may bind to metal ions that are free or part of the ion atmosphere, although presumably there is partial or extensive exclusion of the dye-bound metal ion from the atmosphere because of the preference for smaller cations in the atmosphere.
-
-
-
-
29
-
-
0031880566
-
-
Li, A. Z.; Huang, H.; Re, X.; Qi, L. J.; Marx, K. A. Biophys. J. 1998, 74, 964-973.
-
(1998)
Biophys. J
, vol.74
, pp. 964-973
-
-
Li, A.Z.1
Huang, H.2
Re, X.3
Qi, L.J.4
Marx, K.A.5
-
30
-
-
0037928815
-
-
Das, R.; Mills, T. T.; Kwok, L. W.; Maskel, G. S.; Milien, I. S.; Doniach, S.; Finkelstein, K. D.; Herschlag, D.; Pollack, L. Phys. Rev. Lett. 2003, 90, 188103:1-4.
-
Das, R.; Mills, T. T.; Kwok, L. W.; Maskel, G. S.; Milien, I. S.; Doniach, S.; Finkelstein, K. D.; Herschlag, D.; Pollack, L. Phys. Rev. Lett. 2003, 90, 188103:1-4.
-
-
-
-
32
-
-
0345983583
-
-
Leontes, N. B, SantaLucia, J, Jr, Eds, American Chemical Society: Washington, DC
-
Macke, T.; Case, D. A. Molecular Modeling of Nucleic Acids; Leontes, N. B., SantaLucia, J., Jr., Eds.; American Chemical Society: Washington, DC, 1998; pp 379-393.
-
(1998)
Molecular Modeling of Nucleic Acids
, pp. 379-393
-
-
Macke, T.1
Case, D.A.2
-
33
-
-
0029038105
-
-
Sharp, K. A.; Friedman, R. A.; Misra, V.; Hecht, J.; Honig, B. Biopolymers 1995, 36, 245-262.
-
(1995)
Biopolymers
, vol.36
, pp. 245-262
-
-
Sharp, K.A.1
Friedman, R.A.2
Misra, V.3
Hecht, J.4
Honig, B.5
-
34
-
-
34547539858
-
-
Schwarz, J. A, Contescu, C. I, Putyera, K, Eds, Marcel Dekker: New York
-
Lyubartsev, A. P. In Dekker Encyclopedia of Nanoscience and Nanotechnology; Schwarz, J. A., Contescu, C. I., Putyera, K., Eds.; Marcel Dekker: New York, 2004; pp 2131-2143.
-
(2004)
Dekker Encyclopedia of Nanoscience and Nanotechnology
, pp. 2131-2143
-
-
Lyubartsev, A.P.1
-
36
-
-
36849048400
-
-
As discussed in the Introduction, the Manning theory, although often quoted, is a highly simplified treatment of the ion atmosphere. Manning theory partitions the ion atmosphere into condensed ions, directly attached to the macromolecule, and mobile ions, whose interactions are treated in a linearized Poisson-Boltzmann model. Our method measures all of the thermodynamically associated ions, which includes the condensed ions and contributions from the mobile ions in the Manning framework. Manning theory predicts the total number of excluded anions to be 0.06 ions per charge, independent of salt concentration. Experimentally, we find that the balance between associated counterions and excluded anions does change as a function of total salt concentration (Figure 3, in disagreement with the Manning prediction. Furthermore, we find that even at the lowest concentration studied 5 mM Na, the number of excluded anions is
-
+) the number of excluded anions is 0.11 ± 0.03 per charge. This indicates that even at these low ion concentrations Manning theory is, at best, approximate.
-
-
-
-
37
-
-
20444458780
-
-
Ni, H.; Anderson, C. F.; Record, M. T. J. Phys. Chem. 1999, 103, 3489-3504.
-
(1999)
J. Phys. Chem
, vol.103
, pp. 3489-3504
-
-
Ni, H.1
Anderson, C.F.2
Record, M.T.3
-
38
-
-
36048952831
-
-
Chu, B. V.; Bai, Y.; Lipfert, J.; Herschlag, D.; Doniach, S. Biophys. J. 2007, 93, 3202-3209.
-
(2007)
Biophys. J
, vol.93
, pp. 3202-3209
-
-
Chu, B.V.1
Bai, Y.2
Lipfert, J.3
Herschlag, D.4
Doniach, S.5
-
40
-
-
0014112796
-
-
Strauss, U. P.; Helfgott, C.; Pink, H. J. Phys. Chem. 1967, 71, 2550-2556.
-
(1967)
J. Phys. Chem
, vol.71
, pp. 2550-2556
-
-
Strauss, U.P.1
Helfgott, C.2
Pink, H.3
-
41
-
-
0025363766
-
-
Trend, B. L.; Knoll, D. A.; Ueno, M.; Evans, D. F.; Bloomfield, V. A. Biophys. J. 1990, 57, 829-834.
-
(1990)
Biophys. J
, vol.57
, pp. 829-834
-
-
Trend, B.L.1
Knoll, D.A.2
Ueno, M.3
Evans, D.F.4
Bloomfield, V.A.5
-
42
-
-
4143072545
-
-
Koculi, E.; Lee, N. K.; Thirumalai, D.; Woodson, S. A. J. Mol. Biol. 2004, 341, 27-36.
-
(2004)
J. Mol. Biol
, vol.341
, pp. 27-36
-
-
Koculi, E.1
Lee, N.K.2
Thirumalai, D.3
Woodson, S.A.4
-
43
-
-
0036009329
-
-
Egli, M. Chem. Biol. 2002, 9, 277-286.
-
(2002)
Chem. Biol
, vol.9
, pp. 277-286
-
-
Egli, M.1
-
45
-
-
0026357380
-
-
Braunlin, W. H.; Nordenskiold, L.; Drakenberg, T. Biopolymers 1991, 31, 1343-1346.
-
(1991)
Biopolymers
, vol.31
, pp. 1343-1346
-
-
Braunlin, W.H.1
Nordenskiold, L.2
Drakenberg, T.3
-
46
-
-
0032729621
-
-
Korolev, N.; Lyubartsev, A. P.; Rupprecht, A.; Nordenskiold, L. Biophys. J. 1999, 77, 2736-2749.
-
(1999)
Biophys. J
, vol.77
, pp. 2736-2749
-
-
Korolev, N.1
Lyubartsev, A.P.2
Rupprecht, A.3
Nordenskiold, L.4
-
47
-
-
0026614983
-
-
Braunlin, W. H.; Drakenberg, T.; Nordenskiold, L. J. Biomol. Struct. Dyn. 1992, 10, 333-343.
-
(1992)
J. Biomol. Struct. Dyn
, vol.10
, pp. 333-343
-
-
Braunlin, W.H.1
Drakenberg, T.2
Nordenskiold, L.3
-
48
-
-
0037381880
-
-
Ahmad, R.; Arakawa, H.; Tajmir-Riahi, H. A. Biophys. J. 2003, 84, 2460-2466.
-
(2003)
Biophys. J
, vol.84
, pp. 2460-2466
-
-
Ahmad, R.1
Arakawa, H.2
Tajmir-Riahi, H.A.3
-
49
-
-
0033605083
-
-
Hud, N. V.; Sklenar, V.; Feigon, J. J. Mol. Biol. 1999, 286, 651-660.
-
(1999)
J. Mol. Biol
, vol.286
, pp. 651-660
-
-
Hud, N.V.1
Sklenar, V.2
Feigon, J.3
-
50
-
-
42749101028
-
-
Andresen, K.; Das, R.; Park, H. Y.; Smith, H.; Kwok, L. W.; Lamb, J. S.; Kirkland, E. J.; Herschlag, D.; Finkelstein, K. D.; Pollack, L. Phys. Rev. Lett. 2004, 93, 248103.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 248103
-
-
Andresen, K.1
Das, R.2
Park, H.Y.3
Smith, H.4
Kwok, L.W.5
Lamb, J.S.6
Kirkland, E.J.7
Herschlag, D.8
Finkelstein, K.D.9
Pollack, L.10
-
52
-
-
0028128015
-
-
Lamm, G.; Wong, L.; Pack, G. R. Biopolymers 1994, 34, 227-237.
-
(1994)
Biopolymers
, vol.34
, pp. 227-237
-
-
Lamm, G.1
Wong, L.2
Pack, G.R.3
-
53
-
-
0001487459
-
-
Garde, S.; Hummer, G.; Paulaitis, M. E. J. Chem. Phys. 1997, 108, 1552-1561.
-
(1997)
J. Chem. Phys
, vol.108
, pp. 1552-1561
-
-
Garde, S.1
Hummer, G.2
Paulaitis, M.E.3
|