-
1
-
-
0035219587
-
Boundary Harnack principle and Martin boundary for a uniform domain
-
1
-
Aikawa H. (2001). Boundary Harnack principle and Martin boundary for a uniform domain. J. Math. Soc. Jpn 53(1): 119-145
-
(2001)
J. Math. Soc. Jpn
, vol.53
, pp. 119-145
-
-
Aikawa, H.1
-
2
-
-
3142715871
-
Potential-theoretic characterizations of nonsmooth domains
-
4
-
Aikawa H. (2004). Potential-theoretic characterizations of nonsmooth domains. Bull. Lond. Math. Soc. 36(4): 469-482
-
(2004)
Bull. Lond. Math. Soc.
, vol.36
, pp. 469-482
-
-
Aikawa, H.1
-
4
-
-
16744365634
-
Symmetric stable processes in cones
-
3
-
Bañuelos R. and Bogdan K. (2004). Symmetric stable processes in cones. Potential Anal. 21(3): 263-288
-
(2004)
Potential Anal.
, vol.21
, pp. 263-288
-
-
Bañuelos, R.1
Bogdan, K.2
-
6
-
-
0002149688
-
A probabilistic proof of the boundary Harnack principle
-
Seminar on Stochastic Processes (San Diego, CA, 1989) Birkhäuser Boston, Boston
-
Bass, R., Burdzy, K.: A probabilistic proof of the boundary Harnack principle. In: Seminar on Stochastic Processes (San Diego, CA, 1989) pp. 1-16, Progr. Probab., 18. Birkhäuser Boston, Boston (1990)
-
(1990)
Progr. Probab.
, vol.18
, pp. 1-16
-
-
Bass, R.1
Burdzy, K.2
-
8
-
-
0000760840
-
On the distribution of first hits for the symmetric stable processes
-
Blumenthal R.M., Getoor R.K. and Ray D.B. (1961). On the distribution of first hits for the symmetric stable processes. Trans. Am. Math. Soc. 99: 540-554
-
(1961)
Trans. Am. Math. Soc.
, vol.99
, pp. 540-554
-
-
Blumenthal, R.M.1
Getoor, R.K.2
Ray, D.B.3
-
9
-
-
0031444990
-
The boundary Harnack principle for the fractional Laplacian
-
Bogdan K. (1997). The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123: 43-80
-
(1997)
Stud. Math.
, vol.123
, pp. 43-80
-
-
Bogdan, K.1
-
10
-
-
0001166637
-
Representation of α-harmonic functions in Lipschitz domains
-
Bogdan K. (1999). Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29: 227-243
-
(1999)
Hiroshima Math. J.
, vol.29
, pp. 227-243
-
-
Bogdan, K.1
-
11
-
-
0034652877
-
Sharp estimates for the Green function in Lipschitz domains
-
2
-
Bogdan K. (2000). Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243(2): 326-337
-
(2000)
J. Math. Anal. Appl.
, vol.243
, pp. 326-337
-
-
Bogdan, K.1
-
13
-
-
0002020384
-
Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
-
1
-
Bogdan K. and Byczkowski T. (1999). Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Stud. Math. 133(1): 53-92
-
(1999)
Stud. Math.
, vol.133
, pp. 53-92
-
-
Bogdan, K.1
Byczkowski, T.2
-
14
-
-
0041862067
-
Potential theory of Schrödinger operator based on fractional Laplacian
-
Acta Univ. Wratislav. No. 2256
-
Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. In: Probab. Math. Statist. 20 (2000), no. 2, Acta Univ. Wratislav. No. 2256, 293-335
-
(2000)
Probab. Math. Statist.
, vol.20
, Issue.2
, pp. 293-335
-
-
Bogdan, K.1
Byczkowski, T.2
-
15
-
-
0142137750
-
Harnack inequality for stable processes on d-sets
-
2
-
Bogdan K., Stós A. and Sztonyk P. (2003). Harnack inequality for stable processes on d-sets. Stud. Math. 158(2): 163-198
-
(2003)
Stud. Math.
, vol.158
, pp. 163-198
-
-
Bogdan, K.1
Stós, A.2
Sztonyk, P.3
-
17
-
-
33747852866
-
On Kelvin transformation
-
1
-
Bogdan K. and Zak T. (2006). On Kelvin transformation. J. Theor. Prob. 19(1): 89-120
-
(2006)
J. Theor. Prob.
, vol.19
, pp. 89-120
-
-
Bogdan, K.1
Zak, T.2
-
18
-
-
0038972126
-
On topologies and boundaries in potential theory
-
Springer, Berlin
-
Brelot, M.: On topologies and boundaries in potential theory. In: Lecture Notes in Mathematics. Springer, Berlin (1971)
-
(1971)
Lecture Notes in Mathematics
-
-
Brelot, M.1
-
19
-
-
0037253515
-
Stable processes have thorns
-
Burdzy K. and Kulczycki T. (2003). Stable processes have thorns. Ann. Probab. 31: 170-194
-
(2003)
Ann. Probab.
, vol.31
, pp. 170-194
-
-
Burdzy, K.1
Kulczycki, T.2
-
20
-
-
0036882783
-
Green function estimate for censored stable processes
-
4
-
Chen Z.-Q. and Kim P. (2002). Green function estimate for censored stable processes. Probab. Theory Relat. Fields 124(4): 595-610
-
(2002)
Probab. Theory Relat. Fields
, vol.124
, pp. 595-610
-
-
Chen, Z.-Q.1
Kim, P.2
-
21
-
-
0001600528
-
Martin boundary and integral representation for harmonic functions of symmetric stable processes
-
Chen Z.-Q. and Song R. (1998). Martin boundary and integral representation for harmonic functions of symmetric stable processes. J. Funct. Anal. 159: 267-294
-
(1998)
J. Funct. Anal.
, vol.159
, pp. 267-294
-
-
Chen, Z.-Q.1
Song, R.2
-
22
-
-
0037934617
-
Conditional gauge theorem for non-local Feynman-Kac transforms
-
Chen Z.-Q. and Song R. (2003). Conditional gauge theorem for non-local Feynman-Kac transforms. Probab. Theory Relat. Fields 125: 45-72
-
(2003)
Probab. Theory Relat. Fields
, vol.125
, pp. 45-72
-
-
Chen, Z.-Q.1
Song, R.2
-
24
-
-
23844447757
-
Uniform boundary Harnack principle and generalized triangle property
-
2
-
Hansen W. (2005). Uniform boundary Harnack principle and generalized triangle property. J. Funct. Anal. 226(2): 452-484
-
(2005)
J. Funct. Anal.
, vol.226
, pp. 452-484
-
-
Hansen, W.1
-
25
-
-
32544439660
-
Global comparison of perturbed Green functions
-
3
-
Hansen W. (2006). Global comparison of perturbed Green functions. Math. Ann. 334(3): 643-678
-
(2006)
Math. Ann.
, vol.334
, pp. 643-678
-
-
Hansen, W.1
-
26
-
-
36749085360
-
Fonctions harmoniques pour les potentiels de Riesz sur la boule unit (French) [Harmonic functions for Riesz potentials on the unit ball]
-
3
-
Hmissi F. (1994). Fonctions harmoniques pour les potentiels de Riesz sur la boule unit (French) [Harmonic functions for Riesz potentials on the unit ball]. Exposition. Math. 12(3): 281-288
-
(1994)
Exposition. Math.
, vol.12
, pp. 281-288
-
-
Hmissi, F.1
-
27
-
-
84966238197
-
Positive harmonic functions on Lipschitz domains
-
Hunt R.A. and Wheeden R.L. (1970). Positive harmonic functions on Lipschitz domains. Trans. Am. Math. Soc. 147: 507-527
-
(1970)
Trans. Am. Math. Soc.
, vol.147
, pp. 507-527
-
-
Hunt, R.A.1
Wheeden, R.L.2
-
28
-
-
36749063550
-
On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes
-
Ikeda N.,Watanabe S. (1962) On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. Probab. Theory Relat. Fields 114, 207-227
-
(1962)
Probab. Theory Relat. Fields
, vol.114
, pp. 207-227
-
-
Ikeda, N.1
Watanabe, S.2
-
30
-
-
15444379123
-
The estimates for the Green function in Lipschitz domains for the symmetric stable processes
-
Acta Univ. Wratislav. No. 2470
-
Jakubowski, T.: The estimates for the Green function in Lipschitz domains for the symmetric stable processes. In: Probab. Math. Statist. vol. 22(2), Acta Univ. Wratislav. No. 2470, pp. 419-441 (2002)
-
(2002)
Probab. Math. Statist.
, vol.22
, Issue.2
, pp. 419-441
-
-
Jakubowski, T.1
-
31
-
-
0002345448
-
Properties of Green function of symmetric stable processes
-
Acta Univ. Wratislav. No. 2029
-
Kulczycki, T.: Properties of Green function of symmetric stable processes. Probab. Math. Stat., vol. 17(2), Acta Univ. Wratislav. No. 2029, pp. 339-364 (1997)
-
(1997)
Probab. Math. Stat.
, vol.17
, Issue.2
, pp. 339-364
-
-
Kulczycki, T.1
-
32
-
-
0038434657
-
Intrinsic ultracontractivity for symmetric stable processes
-
3
-
Kulczycki T. (1998). Intrinsic ultracontractivity for symmetric stable processes. Bull. Polish Acad. Sci. Math. 46(3): 325-334
-
(1998)
Bull. Polish Acad. Sci. Math.
, vol.46
, pp. 325-334
-
-
Kulczycki, T.1
-
33
-
-
84972514341
-
Markov processes and Martin boundaries i
-
Kunita H. and Watanabe T. (1965). Markov processes and Martin boundaries I. Ill. J. Math. 9: 485-526
-
(1965)
Ill. J. Math.
, vol.9
, pp. 485-526
-
-
Kunita, H.1
Watanabe, T.2
-
35
-
-
17044423812
-
Relative Fatou theorem for α-harmonic functions in Lipschitz domains
-
3
-
Michalik K. and Ryznar M. (2004). Relative Fatou theorem for α-harmonic functions in Lipschitz domains. Ill. J. Math. 48(3): 977-998
-
(2004)
Ill. J. Math.
, vol.48
, pp. 977-998
-
-
Michalik, K.1
Ryznar, M.2
-
36
-
-
0038255065
-
Martin representation for α-harmonic functions
-
Michalik K. and Samotij K. (2000). Martin representation for α-harmonic functions. Probab. Math. Stat. 20: 75-91
-
(2000)
Probab. Math. Stat.
, vol.20
, pp. 75-91
-
-
Michalik, K.1
Samotij, K.2
-
37
-
-
0003323341
-
Positive harmonic functions and diffusion
-
Cambridge University Press, Cambridge
-
Pinsky, R.: Positive harmonic functions and diffusion. In: Cambridge Studies in Advanced Mathematics, vol. 45. Cambridge University Press, Cambridge (1995)
-
(1995)
Cambridge Studies in Advanced Mathematics
, vol.45
-
-
Pinsky, R.1
-
38
-
-
51249190251
-
Hitting times and potentials for recurrent stable processes
-
Port S. (1967). Hitting times and potentials for recurrent stable processes. J. Anal. Math. 20: 371-395
-
(1967)
J. Anal. Math.
, vol.20
, pp. 371-395
-
-
Port, S.1
-
39
-
-
0011444297
-
Intégrales de Riemann-Liouville et potentiels
-
Riesz M. (1938). Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math. Szeged 9: 1-42
-
(1938)
Acta Sci. Math. Szeged
, vol.9
, pp. 1-42
-
-
Riesz, M.1
-
41
-
-
0037983285
-
Boundary Harnack principle for symmetric stable processes
-
Song R. and Wu J.-M. (1999). Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168: 403-427
-
(1999)
J. Funct. Anal.
, vol.168
, pp. 403-427
-
-
Song, R.1
Wu, J.-M.2
-
42
-
-
0037917508
-
Harmonic measures for symmetric stable processes
-
3
-
Wu J.-M. (2002). Harmonic measures for symmetric stable processes. Stud. Math. 149(3): 281-293
-
(2002)
Stud. Math.
, vol.149
, pp. 281-293
-
-
Wu, J.-M.1
-
43
-
-
2142660354
-
Symmetric stable processes stay in thick sets
-
Wu J.-M. (2004). Symmetric stable processes stay in thick sets. Ann. Probab. 32: 315-336
-
(2004)
Ann. Probab.
, vol.32
, pp. 315-336
-
-
Wu, J.-M.1
|