메뉴 건너뛰기




Volumn 140, Issue 3-4, 2008, Pages 345-381

Estimates and structure of α-harmonic functions

Author keywords

Boundary Harnack inequality; Martin representation; Stable process

Indexed keywords


EID: 36749032160     PISSN: 01788051     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00440-007-0067-0     Document Type: Article
Times cited : (95)

References (43)
  • 1
    • 0035219587 scopus 로고    scopus 로고
    • Boundary Harnack principle and Martin boundary for a uniform domain
    • 1
    • Aikawa H. (2001). Boundary Harnack principle and Martin boundary for a uniform domain. J. Math. Soc. Jpn 53(1): 119-145
    • (2001) J. Math. Soc. Jpn , vol.53 , pp. 119-145
    • Aikawa, H.1
  • 2
    • 3142715871 scopus 로고    scopus 로고
    • Potential-theoretic characterizations of nonsmooth domains
    • 4
    • Aikawa H. (2004). Potential-theoretic characterizations of nonsmooth domains. Bull. Lond. Math. Soc. 36(4): 469-482
    • (2004) Bull. Lond. Math. Soc. , vol.36 , pp. 469-482
    • Aikawa, H.1
  • 4
    • 16744365634 scopus 로고    scopus 로고
    • Symmetric stable processes in cones
    • 3
    • Bañuelos R. and Bogdan K. (2004). Symmetric stable processes in cones. Potential Anal. 21(3): 263-288
    • (2004) Potential Anal. , vol.21 , pp. 263-288
    • Bañuelos, R.1    Bogdan, K.2
  • 6
    • 0002149688 scopus 로고
    • A probabilistic proof of the boundary Harnack principle
    • Seminar on Stochastic Processes (San Diego, CA, 1989) Birkhäuser Boston, Boston
    • Bass, R., Burdzy, K.: A probabilistic proof of the boundary Harnack principle. In: Seminar on Stochastic Processes (San Diego, CA, 1989) pp. 1-16, Progr. Probab., 18. Birkhäuser Boston, Boston (1990)
    • (1990) Progr. Probab. , vol.18 , pp. 1-16
    • Bass, R.1    Burdzy, K.2
  • 8
    • 0000760840 scopus 로고
    • On the distribution of first hits for the symmetric stable processes
    • Blumenthal R.M., Getoor R.K. and Ray D.B. (1961). On the distribution of first hits for the symmetric stable processes. Trans. Am. Math. Soc. 99: 540-554
    • (1961) Trans. Am. Math. Soc. , vol.99 , pp. 540-554
    • Blumenthal, R.M.1    Getoor, R.K.2    Ray, D.B.3
  • 9
    • 0031444990 scopus 로고    scopus 로고
    • The boundary Harnack principle for the fractional Laplacian
    • Bogdan K. (1997). The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123: 43-80
    • (1997) Stud. Math. , vol.123 , pp. 43-80
    • Bogdan, K.1
  • 10
    • 0001166637 scopus 로고    scopus 로고
    • Representation of α-harmonic functions in Lipschitz domains
    • Bogdan K. (1999). Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29: 227-243
    • (1999) Hiroshima Math. J. , vol.29 , pp. 227-243
    • Bogdan, K.1
  • 11
    • 0034652877 scopus 로고    scopus 로고
    • Sharp estimates for the Green function in Lipschitz domains
    • 2
    • Bogdan K. (2000). Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243(2): 326-337
    • (2000) J. Math. Anal. Appl. , vol.243 , pp. 326-337
    • Bogdan, K.1
  • 13
    • 0002020384 scopus 로고    scopus 로고
    • Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
    • 1
    • Bogdan K. and Byczkowski T. (1999). Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Stud. Math. 133(1): 53-92
    • (1999) Stud. Math. , vol.133 , pp. 53-92
    • Bogdan, K.1    Byczkowski, T.2
  • 14
    • 0041862067 scopus 로고    scopus 로고
    • Potential theory of Schrödinger operator based on fractional Laplacian
    • Acta Univ. Wratislav. No. 2256
    • Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. In: Probab. Math. Statist. 20 (2000), no. 2, Acta Univ. Wratislav. No. 2256, 293-335
    • (2000) Probab. Math. Statist. , vol.20 , Issue.2 , pp. 293-335
    • Bogdan, K.1    Byczkowski, T.2
  • 15
    • 0142137750 scopus 로고    scopus 로고
    • Harnack inequality for stable processes on d-sets
    • 2
    • Bogdan K., Stós A. and Sztonyk P. (2003). Harnack inequality for stable processes on d-sets. Stud. Math. 158(2): 163-198
    • (2003) Stud. Math. , vol.158 , pp. 163-198
    • Bogdan, K.1    Stós, A.2    Sztonyk, P.3
  • 17
    • 33747852866 scopus 로고    scopus 로고
    • On Kelvin transformation
    • 1
    • Bogdan K. and Zak T. (2006). On Kelvin transformation. J. Theor. Prob. 19(1): 89-120
    • (2006) J. Theor. Prob. , vol.19 , pp. 89-120
    • Bogdan, K.1    Zak, T.2
  • 18
    • 0038972126 scopus 로고
    • On topologies and boundaries in potential theory
    • Springer, Berlin
    • Brelot, M.: On topologies and boundaries in potential theory. In: Lecture Notes in Mathematics. Springer, Berlin (1971)
    • (1971) Lecture Notes in Mathematics
    • Brelot, M.1
  • 19
    • 0037253515 scopus 로고    scopus 로고
    • Stable processes have thorns
    • Burdzy K. and Kulczycki T. (2003). Stable processes have thorns. Ann. Probab. 31: 170-194
    • (2003) Ann. Probab. , vol.31 , pp. 170-194
    • Burdzy, K.1    Kulczycki, T.2
  • 20
    • 0036882783 scopus 로고    scopus 로고
    • Green function estimate for censored stable processes
    • 4
    • Chen Z.-Q. and Kim P. (2002). Green function estimate for censored stable processes. Probab. Theory Relat. Fields 124(4): 595-610
    • (2002) Probab. Theory Relat. Fields , vol.124 , pp. 595-610
    • Chen, Z.-Q.1    Kim, P.2
  • 21
    • 0001600528 scopus 로고    scopus 로고
    • Martin boundary and integral representation for harmonic functions of symmetric stable processes
    • Chen Z.-Q. and Song R. (1998). Martin boundary and integral representation for harmonic functions of symmetric stable processes. J. Funct. Anal. 159: 267-294
    • (1998) J. Funct. Anal. , vol.159 , pp. 267-294
    • Chen, Z.-Q.1    Song, R.2
  • 22
    • 0037934617 scopus 로고    scopus 로고
    • Conditional gauge theorem for non-local Feynman-Kac transforms
    • Chen Z.-Q. and Song R. (2003). Conditional gauge theorem for non-local Feynman-Kac transforms. Probab. Theory Relat. Fields 125: 45-72
    • (2003) Probab. Theory Relat. Fields , vol.125 , pp. 45-72
    • Chen, Z.-Q.1    Song, R.2
  • 24
    • 23844447757 scopus 로고    scopus 로고
    • Uniform boundary Harnack principle and generalized triangle property
    • 2
    • Hansen W. (2005). Uniform boundary Harnack principle and generalized triangle property. J. Funct. Anal. 226(2): 452-484
    • (2005) J. Funct. Anal. , vol.226 , pp. 452-484
    • Hansen, W.1
  • 25
    • 32544439660 scopus 로고    scopus 로고
    • Global comparison of perturbed Green functions
    • 3
    • Hansen W. (2006). Global comparison of perturbed Green functions. Math. Ann. 334(3): 643-678
    • (2006) Math. Ann. , vol.334 , pp. 643-678
    • Hansen, W.1
  • 26
    • 36749085360 scopus 로고
    • Fonctions harmoniques pour les potentiels de Riesz sur la boule unit (French) [Harmonic functions for Riesz potentials on the unit ball]
    • 3
    • Hmissi F. (1994). Fonctions harmoniques pour les potentiels de Riesz sur la boule unit (French) [Harmonic functions for Riesz potentials on the unit ball]. Exposition. Math. 12(3): 281-288
    • (1994) Exposition. Math. , vol.12 , pp. 281-288
    • Hmissi, F.1
  • 27
    • 84966238197 scopus 로고
    • Positive harmonic functions on Lipschitz domains
    • Hunt R.A. and Wheeden R.L. (1970). Positive harmonic functions on Lipschitz domains. Trans. Am. Math. Soc. 147: 507-527
    • (1970) Trans. Am. Math. Soc. , vol.147 , pp. 507-527
    • Hunt, R.A.1    Wheeden, R.L.2
  • 28
    • 36749063550 scopus 로고
    • On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes
    • Ikeda N.,Watanabe S. (1962) On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. Probab. Theory Relat. Fields 114, 207-227
    • (1962) Probab. Theory Relat. Fields , vol.114 , pp. 207-227
    • Ikeda, N.1    Watanabe, S.2
  • 30
    • 15444379123 scopus 로고    scopus 로고
    • The estimates for the Green function in Lipschitz domains for the symmetric stable processes
    • Acta Univ. Wratislav. No. 2470
    • Jakubowski, T.: The estimates for the Green function in Lipschitz domains for the symmetric stable processes. In: Probab. Math. Statist. vol. 22(2), Acta Univ. Wratislav. No. 2470, pp. 419-441 (2002)
    • (2002) Probab. Math. Statist. , vol.22 , Issue.2 , pp. 419-441
    • Jakubowski, T.1
  • 31
    • 0002345448 scopus 로고    scopus 로고
    • Properties of Green function of symmetric stable processes
    • Acta Univ. Wratislav. No. 2029
    • Kulczycki, T.: Properties of Green function of symmetric stable processes. Probab. Math. Stat., vol. 17(2), Acta Univ. Wratislav. No. 2029, pp. 339-364 (1997)
    • (1997) Probab. Math. Stat. , vol.17 , Issue.2 , pp. 339-364
    • Kulczycki, T.1
  • 32
    • 0038434657 scopus 로고    scopus 로고
    • Intrinsic ultracontractivity for symmetric stable processes
    • 3
    • Kulczycki T. (1998). Intrinsic ultracontractivity for symmetric stable processes. Bull. Polish Acad. Sci. Math. 46(3): 325-334
    • (1998) Bull. Polish Acad. Sci. Math. , vol.46 , pp. 325-334
    • Kulczycki, T.1
  • 33
    • 84972514341 scopus 로고
    • Markov processes and Martin boundaries i
    • Kunita H. and Watanabe T. (1965). Markov processes and Martin boundaries I. Ill. J. Math. 9: 485-526
    • (1965) Ill. J. Math. , vol.9 , pp. 485-526
    • Kunita, H.1    Watanabe, T.2
  • 35
    • 17044423812 scopus 로고    scopus 로고
    • Relative Fatou theorem for α-harmonic functions in Lipschitz domains
    • 3
    • Michalik K. and Ryznar M. (2004). Relative Fatou theorem for α-harmonic functions in Lipschitz domains. Ill. J. Math. 48(3): 977-998
    • (2004) Ill. J. Math. , vol.48 , pp. 977-998
    • Michalik, K.1    Ryznar, M.2
  • 36
    • 0038255065 scopus 로고    scopus 로고
    • Martin representation for α-harmonic functions
    • Michalik K. and Samotij K. (2000). Martin representation for α-harmonic functions. Probab. Math. Stat. 20: 75-91
    • (2000) Probab. Math. Stat. , vol.20 , pp. 75-91
    • Michalik, K.1    Samotij, K.2
  • 37
    • 0003323341 scopus 로고
    • Positive harmonic functions and diffusion
    • Cambridge University Press, Cambridge
    • Pinsky, R.: Positive harmonic functions and diffusion. In: Cambridge Studies in Advanced Mathematics, vol. 45. Cambridge University Press, Cambridge (1995)
    • (1995) Cambridge Studies in Advanced Mathematics , vol.45
    • Pinsky, R.1
  • 38
    • 51249190251 scopus 로고
    • Hitting times and potentials for recurrent stable processes
    • Port S. (1967). Hitting times and potentials for recurrent stable processes. J. Anal. Math. 20: 371-395
    • (1967) J. Anal. Math. , vol.20 , pp. 371-395
    • Port, S.1
  • 39
    • 0011444297 scopus 로고
    • Intégrales de Riemann-Liouville et potentiels
    • Riesz M. (1938). Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math. Szeged 9: 1-42
    • (1938) Acta Sci. Math. Szeged , vol.9 , pp. 1-42
    • Riesz, M.1
  • 41
    • 0037983285 scopus 로고    scopus 로고
    • Boundary Harnack principle for symmetric stable processes
    • Song R. and Wu J.-M. (1999). Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168: 403-427
    • (1999) J. Funct. Anal. , vol.168 , pp. 403-427
    • Song, R.1    Wu, J.-M.2
  • 42
    • 0037917508 scopus 로고    scopus 로고
    • Harmonic measures for symmetric stable processes
    • 3
    • Wu J.-M. (2002). Harmonic measures for symmetric stable processes. Stud. Math. 149(3): 281-293
    • (2002) Stud. Math. , vol.149 , pp. 281-293
    • Wu, J.-M.1
  • 43
    • 2142660354 scopus 로고    scopus 로고
    • Symmetric stable processes stay in thick sets
    • Wu J.-M. (2004). Symmetric stable processes stay in thick sets. Ann. Probab. 32: 315-336
    • (2004) Ann. Probab. , vol.32 , pp. 315-336
    • Wu, J.-M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.