-
1
-
-
0001577515
-
Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien
-
Ancona A. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier (Grenoble). 28:1978;169-213.
-
(1978)
Ann. Inst. Fourier (Grenoble)
, vol.28
, pp. 169-213
-
-
Ancona, A.1
-
3
-
-
0002149688
-
A probabilistic proof of the boundary Harnack principle
-
in "Seminar on Stochastic Processes, 1989" (E. Çinlar, K. L. Chung, & R. K. Getoor, Eds.), Boston, Cambridge: Birkhauser
-
Bass R. F., Burdzy K. A probabilistic proof of the boundary Harnack principle. Çinlar E., Chung K. L., Getoor R. K., Seminar on Stochastic Processes, 1989. Progress in Probability. 18:1990;1-16 Birkhauser, Boston, Cambridge.
-
(1990)
Progress in Probability
, vol.18
, pp. 1-16
-
-
Bass R., F.1
Burdzy, K.2
-
4
-
-
0002538769
-
A boundary Harnack principle in twisted Hölder domains
-
Bass R. F., Burdzy K. A boundary Harnack principle in twisted Hölder domains. Ann. of Math. 134:1991;253-276.
-
(1991)
Ann. of Math.
, vol.134
, pp. 253-276
-
-
Bass R., F.1
Burdzy, K.2
-
5
-
-
84963057298
-
The boundary Harnack principle for nondivergence form elliptic operators
-
Bass R. F., Burdzy K. The boundary Harnack principle for nondivergence form elliptic operators. J. London Math. Soc. 50:1994;157-169.
-
(1994)
J. London Math. Soc.
, vol.50
, pp. 157-169
-
-
Bass R., F.1
Burdzy, K.2
-
6
-
-
0031444990
-
The boundary Harnack principle for the fractional Laplacian
-
Bogdan K. The boundary Harnack principle for the fractional Laplacian. Studia Math. 123:1997;43-80.
-
(1997)
Studia Math.
, vol.123
, pp. 43-80
-
-
Bogdan, K.1
-
7
-
-
0001166637
-
Representation of α-harmonic functions in Lipschitz domains
-
Bogdan K. Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29:1999;227-243.
-
(1999)
Hiroshima Math. J.
, vol.29
, pp. 227-243
-
-
Bogdan, K.1
-
8
-
-
0002020384
-
Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
-
Bogdan K., Byczkowski T. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133:1999;53-92.
-
(1999)
Studia Math.
, vol.133
, pp. 53-92
-
-
Bogdan, K.1
Byczkowski, T.2
-
9
-
-
0000141096
-
Probabilistic proof of boundary Harnack principle or α-harmonic functions
-
Bogdan K., Byczkowski T. Probabilistic proof of boundary Harnack principle or α-harmonic functions. Potential Anal. 11:1999;135-156.
-
(1999)
Potential Anal.
, vol.11
, pp. 135-156
-
-
Bogdan, K.1
Byczkowski, T.2
-
10
-
-
0000736848
-
Boundary behavior of nonnegative solutions of elliptic operators in divergence form
-
Caffarelli L., Fabes E., Mortola S., Salsa S. Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30:1981;621-640.
-
(1981)
Indiana Univ. Math. J.
, vol.30
, pp. 621-640
-
-
Caffarelli, L.1
Fabes, E.2
Mortola, S.3
Salsa, S.4
-
11
-
-
0001600528
-
Martin boundary and integral representation for harmonic functions of symmetric stable processes
-
Chen Z.-Q., Song R. Martin boundary and integral representation for harmonic functions of symmetric stable processes. J. Funct. Anal. 159:1998;267-294.
-
(1998)
J. Funct. Anal.
, vol.159
, pp. 267-294
-
-
Chen, Z.-Q.1
Song, R.2
-
12
-
-
85037799611
-
Green's function for a ball
-
Progress in Probability and Statistics. Boston, Cambridge: Birkhauser. p. 1-13
-
Chung K. L. Green's function for a ball. Seminar on Stochastic Processes, 1986. Progress in Probability and Statistics. 13:1987;Birkhauser, Boston, Cambridge. p. 1-13.
-
(1987)
Seminar on Stochastic Processes, 1986
, vol.13
-
-
Chung K., L.1
-
14
-
-
84966211299
-
Conditional gauge and potential theory for the Schrödinger operator
-
Cranston M., Fabes E., Zhao Z. Conditional gauge and potential theory for the Schrödinger operator. Trans. Amer. Math. Soc. 307:1988;171-194.
-
(1988)
Trans. Amer. Math. Soc.
, vol.307
, pp. 171-194
-
-
Cranston, M.1
Fabes, E.2
Zhao, Z.3
-
15
-
-
0017727486
-
Estimates of harmonic measure
-
Dahlberg B. Estimates of harmonic measure. Arch. Rational Mech. Anal. 65:1977;275-288.
-
(1977)
Arch. Rational Mech. Anal.
, vol.65
, pp. 275-288
-
-
Dahlberg, B.1
-
16
-
-
84966238197
-
Positive harmonic functions on Lipschitz domains
-
Hunt R. A., Wheeden R. L. Positive harmonic functions on Lipschitz domains. Trans. Amer. Math. Soc. 147:1970;507-527.
-
(1970)
Trans. Amer. Math. Soc.
, vol.147
, pp. 507-527
-
-
Hunt R., A.1
Wheeden R., L.2
-
17
-
-
0002004980
-
Boundary behavior of harmonic functions in non-tangentially accessible domains
-
Jerison D. S., Kenig C. E. Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. in Math. 46:1982;80-147.
-
(1982)
Adv. in Math.
, vol.46
, pp. 80-147
-
-
Jerison D., S.1
Kenig C., E.2
-
18
-
-
0002814972
-
Boundary value problems on Lipschitz domains
-
in "Studies in Partial Differential Equations" (W. Littmann, Ed.), Washington: Math. Assoc. of America
-
Jerison D. S., Kenig C. E. Boundary value problems on Lipschitz domains. Littmann W., Studies in Partial Differential Equations. Studies in Mathematics. 23:1982;1-68 Math. Assoc. of America, Washington.
-
(1982)
Studies in Mathematics
, vol.23
, pp. 1-68
-
-
Jerison D., S.1
Kenig C., E.2
-
20
-
-
0002345448
-
Properties of Green function of symmetric stable processes
-
Kulczycki T. Properties of Green function of symmetric stable processes. Probab. Math. Statist. 17:1997;339-364.
-
(1997)
Probab. Math. Statist.
, vol.17
, pp. 339-364
-
-
Kulczycki, T.1
-
21
-
-
0001356097
-
Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains
-
Wu J.-M. G. Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains. Ann. Inst. Fourier (Grenoble). 28:1978;147-167.
-
(1978)
Ann. Inst. Fourier (Grenoble)
, vol.28
, pp. 147-167
-
-
Wu J.-M., G.1
-
22
-
-
0000916784
-
Green function for Schrödinger operator and conditioned Feynman-Kac gauge
-
Zhao Z. Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116:1986;309-334.
-
(1986)
J. Math. Anal. Appl.
, vol.116
, pp. 309-334
-
-
Zhao, Z.1
|