-
2
-
-
0002149688
-
A probabilistic proof of the boundary Harnack principle
-
E. Çinlar, K. L. Chung, and R. K. Getoor (eds.), 1989, Birkhäuser, Boston
-
R. F. Bass and K. Burdzy, A probabilistic proof of the boundary Harnack principle, in: E. Çinlar, K. L. Chung, and R. K. Getoor (eds.), Seminar on Stochastic Processes, 1989, Birkhäuser, Boston, 1990, 1-16.
-
(1990)
Seminar on Stochastic Processes
, pp. 1-16
-
-
Bass, R.F.1
Burdzy, K.2
-
3
-
-
84963057298
-
The boundary Harnack principle for non-divergence form elliptic operators
-
_, _, The boundary Harnack principle for non-divergence form elliptic operators, J. London Math. Soc. 50 (1994), 157-169.
-
(1994)
J. London Math. Soc.
, vol.50
, pp. 157-169
-
-
-
5
-
-
0010682521
-
Markov processes and their potential theory
-
Academic Press, New York
-
R. M. Blumenthal and R. K. Getoor, Markov Processes and Their Potential Theory, Pure and Appl. Math., Academic Press, New York, 1968.
-
(1968)
Pure and Appl. Math.
-
-
Blumenthal, R.M.1
Getoor, R.K.2
-
6
-
-
0003456233
-
Multidimensional brownian excursions and potential theory
-
Longman, Harlow
-
K. Burdzy, Multidimensional Brownian Excursions and Potential Theory, Pitman Res. Notes in Math. 164, Longman, Harlow, 1987.
-
(1987)
Pitman Res. Notes in Math.
, vol.164
-
-
Burdzy, K.1
-
7
-
-
0000736848
-
Boundary behavior of nonnegative solutions of elliptic operators in divergence form
-
L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621-640.
-
(1981)
Indiana Univ. Math. J.
, vol.30
, pp. 621-640
-
-
Caffarelli, L.1
Fabes, E.2
Mortola, S.3
Salsa, S.4
-
8
-
-
84966211299
-
Conditional gauge, and potential theory for the schrödinger operator
-
M. Cranston, E. Fabes, and Z. Zhao, Conditional gauge, and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1988), 171-194.
-
(1988)
Trans. Amer. Math. Soc.
, vol.307
, pp. 171-194
-
-
Cranston, M.1
Fabes, E.2
Zhao, Z.3
-
9
-
-
0017727486
-
Estimates of harmonic measure
-
B. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 275-288.
-
(1977)
Arch. Rational Mech. Anal.
, vol.65
, pp. 275-288
-
-
Dahlberg, B.1
-
10
-
-
0004188078
-
-
Academic Press, New York
-
E. B. Dynkin, Markov Processes, Vols. I, II, Academic Press, New York, 1965.
-
(1965)
Markov Processes
, vol.1-2
-
-
Dynkin, E.B.1
-
11
-
-
0002004980
-
Boundary behavior of harmonic functions in non-tangentially accessible domains
-
D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46 (1982), 80-147.
-
(1982)
Adv. in Math.
, vol.46
, pp. 80-147
-
-
Jerison, D.S.1
Kenig, C.E.2
-
12
-
-
0002814972
-
Boundary value problems on Lipschitz domains
-
Math. Assoc. Amer.
-
_, _, Boundary value problems on Lipschitz domains, in: W. Littman (ed.), Studies in Partial Differential Equations, MAA Stud. Math. 23, Math. Assoc. Amer., 1982, 1-68.
-
(1982)
Studies in Partial Differential Equations, MAA Stud. Math.
, vol.23
, pp. 1-68
-
-
Littman, W.1
-
14
-
-
0001446809
-
Infinitely divisible processes and their potential theory
-
S. C. Port and C. J. Stone, Infinitely divisible processes and their potential theory, Ann. Inst. Fourier (Grenoble) 21 (2) (1971), 157-275; 21 (4) (1971), 179-265.
-
(1971)
Ann. Inst. Fourier (Grenoble)
, vol.21
, Issue.2
, pp. 157-275
-
-
Port, S.C.1
Stone, C.J.2
-
15
-
-
0001446809
-
-
S. C. Port and C. J. Stone, Infinitely divisible processes and their potential theory, Ann. Inst. Fourier (Grenoble) 21 (2) (1971), 157-275; 21 (4) (1971), 179-265.
-
(1971)
Ann. Inst. Fourier (Grenoble)
, vol.21
, Issue.4
, pp. 179-265
-
-
-
16
-
-
84972537495
-
On stable processes with boundary conditions
-
S. Watanabe, On stable processes with boundary conditions, J. Math. Soc. Japan 14 (1962), 170-198.
-
(1962)
J. Math. Soc. Japan
, vol.14
, pp. 170-198
-
-
Watanabe, S.1
|