-
3
-
-
0000760840
-
On the distribution of first hits for the symmetric stable processes
-
R. M. Blumenthal, R. K. Getoor and D. B. Ray, On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc. 99 (1961), 540-554.
-
(1961)
Trans. Amer. Math. Soc.
, vol.99
, pp. 540-554
-
-
Blumenthal, R.M.1
Getoor, R.K.2
Ray, D.B.3
-
4
-
-
0031444990
-
The boundary Harnack principle for the fractional Laplacian
-
K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), 43-80.
-
(1997)
Studia Math.
, vol.123
, pp. 43-80
-
-
Bogdan, K.1
-
5
-
-
0040003985
-
Representation of α-harmonic functions in Lipschitz domains
-
to appear
-
_, Representation of α-harmonic functions in Lipschitz domains, Hiroshima Math. J. (1999), to appear.
-
(1999)
Hiroshima Math. J.
-
-
-
6
-
-
0040597193
-
Probabilistic proof of the boundary Harnack principle for symmetric stable processes
-
to appear
-
K. Bogdan and T. Byczkowski, Probabilistic proof of the boundary Harnack principle for symmetric stable processes, Potential Anal. (1999), to appear.
-
(1999)
Potential Anal.
-
-
Bogdan, K.1
Byczkowski, T.2
-
7
-
-
0003056926
-
Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions
-
R. Carmona, W. C. Masters and B. Simon, Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal. 91 (1990), 117-142.
-
(1990)
J. Funct. Anal.
, vol.91
, pp. 117-142
-
-
Carmona, R.1
Masters, W.C.2
Simon, B.3
-
8
-
-
0031572650
-
Intrinsic ultracontractivity and conditional gauge for symmetric stable processes
-
Z. Q. Chen and R. Song, Intrinsic ultracontractivity and Conditional Gauge for symmetric stable processes, ibid. 150 (1997), 204-239.
-
(1997)
J. Funct. Anal.
, vol.150
, pp. 204-239
-
-
Chen, Z.Q.1
Song, R.2
-
10
-
-
84966211299
-
Conditional gauge and potential theory for the Schrödinger operator
-
M. Cranston, E. Fabes and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1988), 174-194.
-
(1988)
Trans. Amer. Math. Soc.
, vol.307
, pp. 174-194
-
-
Cranston, M.1
Fabes, E.2
Zhao, Z.3
-
11
-
-
0004188078
-
-
Academic Press, New York
-
E. B. Dynkin, Markov Processes, Vols. I, II, Academic Press, New York, 1965.
-
(1965)
Markov Processes
, vol.1-2
-
-
Dynkin, E.B.1
-
12
-
-
84990557374
-
The N-body problem in quantum mechanics
-
C. Fefferman, The N-body problem in quantum mechanics, Comm. Pure Appl. Math. 39 (1986), S67-S109.
-
(1986)
Comm. Pure Appl. Math.
, vol.39
-
-
Fefferman, C.1
-
14
-
-
0012896944
-
On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes
-
N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), 79-95.
-
(1962)
J. Math. Kyoto Univ.
, vol.2
, pp. 79-95
-
-
Ikeda, N.1
Watanabe, S.2
-
15
-
-
0002345448
-
Properties of Green function of symmetric stable processes
-
T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist. 17 (1997), 339-364.
-
(1997)
Probab. Math. Statist.
, vol.17
, pp. 339-364
-
-
Kulczycki, T.1
-
17
-
-
84968507650
-
The stability of matter: From atoms to stars
-
E. H. Lieb, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. 22 (1990), 1-49.
-
(1990)
Bull. Amer. Math. Soc.
, vol.22
, pp. 1-49
-
-
Lieb, E.H.1
-
19
-
-
0001446809
-
Infinitely divisible processes and their potential theory
-
no. 4, 179-265
-
S. C. Port and C. J. Stone, Infinitely divisible processes and their potential theory, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 2, 157-275, no. 4, 179-265.
-
(1971)
Ann. Inst. Fourier (Grenoble)
, vol.21
, Issue.2
, pp. 157-275
-
-
Port, S.C.1
Stone, C.J.2
-
22
-
-
0040568178
-
Spectral analysis of pseudodifferential operators
-
R. A. Weder, Spectral analysis of pseudodifferential operators, J. Funct. Anal. 20 (1975), 319-337.
-
(1975)
J. Funct. Anal.
, vol.20
, pp. 319-337
-
-
Weder, R.A.1
-
23
-
-
0000171109
-
A probabilistic principle and generalized Schrödinger perturbation
-
Z. Zhao, A probabilistic principle and generalized Schrödinger perturbation, J. Funct. Anal. 101 (1991), 162-176.
-
(1991)
J. Funct. Anal.
, vol.101
, pp. 162-176
-
-
Zhao, Z.1
|