메뉴 건너뛰기




Volumn 24, Issue , 2005, Pages 47-75

From Data Mining to Knowledge Mining

Author keywords

[No Author keywords available]

Indexed keywords


EID: 36349028551     PISSN: 01697161     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S0169-7161(04)24002-0     Document Type: Review
Times cited : (19)

References (105)
  • 3
    • 0037245469 scopus 로고    scopus 로고
    • Coronary risk prediction by logical analysis of data
    • Alexe S., Blackstone E., and Hammer P. Coronary risk prediction by logical analysis of data. Ann. Oper. Res. 119 (2003) 15-42
    • (2003) Ann. Oper. Res. , vol.119 , pp. 15-42
    • Alexe, S.1    Blackstone, E.2    Hammer, P.3
  • 4
    • 0343555123 scopus 로고
    • The PROMISE method for selecting most relevant attributes for inductive learning systems
    • Report No. UIUCDCS-F-82-898. Department of Computer Science, University of Illinois, Urbana
    • Baim, P.W. (1982). The PROMISE method for selecting most relevant attributes for inductive learning systems. Report No. UIUCDCS-F-82-898. Department of Computer Science, University of Illinois, Urbana
    • (1982)
    • Baim, P.W.1
  • 5
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • Belkin M., and Niyogi P. Semi-supervised learning on Riemannian manifolds. Machine Learning 56 (2004) 209-239
    • (2004) Machine Learning , vol.56 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 84951634959 scopus 로고
    • INDUCE 4: A program for incrementally learning structural descriptions from examples
    • 87-2. UIUCDCS-F-87-958. Department of Computer Science, University of Illinois, Urbana
    • Bentrup, J.A., Mehler, G.J., Riedesel, J.D. (1987). INDUCE 4: a program for incrementally learning structural descriptions from examples. Report of the Intelligent Systems Group ISG 87-2. UIUCDCS-F-87-958. Department of Computer Science, University of Illinois, Urbana
    • (1987) Report of the Intelligent Systems Group ISG
    • Bentrup, J.A.1    Mehler, G.J.2    Riedesel, J.D.3
  • 7
    • 0011691180 scopus 로고
    • Learning two-tiered descriptions of flexible concepts: the POSEIDON system
    • Bergadano F., Matwin S., Michalski R.S., and Zhang J. Learning two-tiered descriptions of flexible concepts: the POSEIDON system. Machine Learning 8 (1992) 5-43
    • (1992) Machine Learning , vol.8 , pp. 5-43
    • Bergadano, F.1    Matwin, S.2    Michalski, R.S.3    Zhang, J.4
  • 8
    • 0032026163 scopus 로고    scopus 로고
    • Data-driven constructive induction
    • Special Issue on Feature, Transformation and Subset Selection
    • Bloedorn E., and Michalski R.S. Data-driven constructive induction. Special Issue on Feature, Transformation and Subset Selection. IEEE Intell. Syst. March/April (1998) 30-37
    • (1998) IEEE Intell. Syst. , Issue.March-April , pp. 30-37
    • Bloedorn, E.1    Michalski, R.S.2
  • 11
    • 0004192613 scopus 로고
    • Spartan Books, New York A translation from Russian
    • Bongard N. Pattern Recognition (1970), Spartan Books, New York A translation from Russian
    • (1970) Pattern Recognition
    • Bongard, N.1
  • 15
    • 0002364545 scopus 로고
    • Automatic construction of navigable concept networks characterizing text databases
    • Topics in Artificial Intelligence. Gori M., and Soda G. (Eds), Springer-Verlag
    • Carpineto C., and Romano G. Automatic construction of navigable concept networks characterizing text databases. In: Gori M., and Soda G. (Eds). Topics in Artificial Intelligence. Lecture Notes in Artificial Intelligence vol. 992 (1995), Springer-Verlag 67-78
    • (1995) Lecture Notes in Artificial Intelligence , vol.992 , pp. 67-78
    • Carpineto, C.1    Romano, G.2
  • 18
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., and Niblett T. The CN2 induction algorithm. Machine Learning 3 (1989) 261-283
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 21
    • 67649672777 scopus 로고    scopus 로고
    • Davis, J. (1981). CONVART: a program for constructive induction on time-dependent data. MS Thesis. Department of Computer Science, University of Illinois, Urbana
    • Davis, J. (1981). CONVART: a program for constructive induction on time-dependent data. MS Thesis. Department of Computer Science, University of Illinois, Urbana
  • 26
    • 0003480454 scopus 로고
    • Dubois D., Prade H., and Yager R.R. (Eds), Morgan Kaufmann
    • In: Dubois D., Prade H., and Yager R.R. (Eds). Readings in Fuzzy Sets and Intelligent Systems (1993), Morgan Kaufmann
    • (1993) Readings in Fuzzy Sets and Intelligent Systems
  • 27
    • 0342494125 scopus 로고
    • An incremental deductive strategy for controlling constructive induction in learning from examples
    • Elio R., and Watanabe L. An incremental deductive strategy for controlling constructive induction in learning from examples. Machine Learning 7 (1991) 7-44
    • (1991) Machine Learning , vol.7 , pp. 7-44
    • Elio, R.1    Watanabe, L.2
  • 29
    • 0013058304 scopus 로고
    • Integrating quantitative and qualitative discovery in the ABACUS system
    • Kodratoff Y., and Michalski R.S. (Eds), Morgan Kaufmann, San Mateo, CA
    • Falkenhainer B.C., and Michalski R.S. Integrating quantitative and qualitative discovery in the ABACUS system. In: Kodratoff Y., and Michalski R.S. (Eds). Machine Learning: An Artificial Intelligence Approach, vol. III (1990), Morgan Kaufmann, San Mateo, CA 153-190
    • (1990) Machine Learning: An Artificial Intelligence Approach, vol. III , pp. 153-190
    • Falkenhainer, B.C.1    Michalski, R.S.2
  • 32
    • 0003641269 scopus 로고    scopus 로고
    • Fayyad U.M., Piatetsky-Shapiro G., Smyth P., and Uhturusamy R. (Eds), AAAI Press, San Mateo, CA
    • In: Fayyad U.M., Piatetsky-Shapiro G., Smyth P., and Uhturusamy R. (Eds). Advances in Knowledge Discovery and Data Mining (1996), AAAI Press, San Mateo, CA
    • (1996) Advances in Knowledge Discovery and Data Mining
  • 35
    • 84935554816 scopus 로고
    • The Abacus.2 system for quantitative discovery: Using dependencies to discover non-linear terms
    • 88-4. Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA
    • Greene, G. (1988). The Abacus.2 system for quantitative discovery: using dependencies to discover non-linear terms. Reports of the Machine Learning and Inference Laboratory MLI 88-4. Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA
    • (1988) Reports of the Machine Learning and Inference Laboratory MLI
    • Greene, G.1
  • 41
    • 0030284618 scopus 로고    scopus 로고
    • A database perspective on knowledge discovery
    • Imielinski T., and Mannila H. A database perspective on knowledge discovery. Comm. ACM 39 (1996) 58-64
    • (1996) Comm. ACM , vol.39 , pp. 58-64
    • Imielinski, T.1    Mannila, H.2
  • 50
    • 67649636118 scopus 로고
    • Coper: a methodology for learning invariant functional descriptions
    • Michalski R.S., Mitchell T.M., and Carbonell J.G. (Eds), Kluwer Academic, Boston, MA
    • Kokar M.M. Coper: a methodology for learning invariant functional descriptions. In: Michalski R.S., Mitchell T.M., and Carbonell J.G. (Eds). Machine Learning: A Guide to Current Research (1986), Kluwer Academic, Boston, MA
    • (1986) Machine Learning: A Guide to Current Research
    • Kokar, M.M.1
  • 52
    • 85061066913 scopus 로고
    • Selection of relevant features in machine learning
    • Langley, P. (1994). Selection of relevant features in machine learning. In: AAAI Fall Symposium on Relevance, pp. 140-144
    • (1994) AAAI Fall Symposium on Relevance , pp. 140-144
    • Langley, P.1
  • 53
    • 0005075744 scopus 로고
    • Rediscovering chemistry with the BACON system
    • Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds), Morgan Kaufmann, San Mateo, CA
    • Langley P., Bradshaw G.L., and Simon H.A. Rediscovering chemistry with the BACON system. In: Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds). Machine Learning: An Artificial Intelligence Approach (1983), Morgan Kaufmann, San Mateo, CA 307-329
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 307-329
    • Langley, P.1    Bradshaw, G.L.2    Simon, H.A.3
  • 54
    • 67649642302 scopus 로고
    • INDUCE-1: An interactive inductive inference program in VL21 logic system
    • Report No. 876. Department of Computer Science, University of Illinois, Urbana
    • Larson, J.B. (1977). INDUCE-1: an interactive inductive inference program in VL21 logic system. Report No. 876. Department of Computer Science, University of Illinois, Urbana
    • (1977)
    • Larson, J.B.1
  • 55
    • 67649665771 scopus 로고
    • Akademia Nauk USSR, Sibirskoje Otdelenie, Institut Matematiki, Izdatelstwo Nauka, Novosibirsk
    • Lbov G.S. Metody Obrabotki Raznotipnych Ezperimentalnych Dannych (Methods for Analysis of Multitype Experimental Data) (1981), Akademia Nauk USSR, Sibirskoje Otdelenie, Institut Matematiki, Izdatelstwo Nauka, Novosibirsk
    • (1981) Methods for Analysis of Multitype Experimental Data
    • Lbov, G.S.1
  • 56
    • 0034299906 scopus 로고    scopus 로고
    • Selecting examples for partial memory learning
    • Maloof M., and Michalski R.S. Selecting examples for partial memory learning. Machine Learning 41 (2000) 27-52
    • (2000) Machine Learning , vol.41 , pp. 27-52
    • Maloof, M.1    Michalski, R.S.2
  • 57
    • 1242310003 scopus 로고    scopus 로고
    • Incremental learning with partial instance memory
    • Maloof M., and Michalski R.S. Incremental learning with partial instance memory. Artificial Intelligence 154 (2004) 95-126
    • (2004) Artificial Intelligence , vol.154 , pp. 95-126
    • Maloof, M.1    Michalski, R.S.2
  • 58
    • 84951634969 scopus 로고
    • Validation, verification and experimentation with Abacus2
    • 91-8. Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA
    • Michael, J. (1991). Validation, verification and experimentation with Abacus2. Reports of the Machine Learning and Inference Laboratory MLI 91-8. Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA
    • (1991) Reports of the Machine Learning and Inference Laboratory MLI
    • Michael, J.1
  • 59
    • 26644463335 scopus 로고
    • A planar geometrical model for representing multi-dimensional discrete spaces and multiple-valued logic functions
    • No. 897. Department of Computer Science, University of Illinois, Urbana
    • Michalski, R.S. (1978). A planar geometrical model for representing multi-dimensional discrete spaces and multiple-valued logic functions. ISG Report No. 897. Department of Computer Science, University of Illinois, Urbana
    • (1978) ISG Report
    • Michalski, R.S.1
  • 60
    • 0000942050 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski R.S. A theory and methodology of inductive learning. Artificial Intelligence 20 (1983) 111-161
    • (1983) Artificial Intelligence , vol.20 , pp. 111-161
    • Michalski, R.S.1
  • 61
    • 0039093111 scopus 로고
    • Learning flexible concepts: fundamental ideas and a method based on two-tiered representation
    • Kodratoff Y., and Michalski R.S. (Eds), Morgan Kaufmann, San Mateo, CA
    • Michalski R.S. Learning flexible concepts: fundamental ideas and a method based on two-tiered representation. In: Kodratoff Y., and Michalski R.S. (Eds). Machine Learning: An Artificial Intelligence Approach, vol. III (1990), Morgan Kaufmann, San Mateo, CA 63-102
    • (1990) Machine Learning: An Artificial Intelligence Approach, vol. III , pp. 63-102
    • Michalski, R.S.1
  • 62
    • 33646159872 scopus 로고    scopus 로고
    • Attributional calculus: A logic and representation language for natural induction
    • 04-2. George Mason University, Fairfax, VA
    • Michalski, R.S. (2004). Attributional calculus: a logic and representation language for natural induction. Reports of the Machine Learning and Inference Laboratory MLI 04-2. George Mason University, Fairfax, VA
    • (2004) Reports of the Machine Learning and Inference Laboratory MLI
    • Michalski, R.S.1
  • 63
    • 67649673345 scopus 로고    scopus 로고
    • Multistrategy data exploration using the INLEN system: recent advances
    • IIS'97, Zakopane, Poland, IPI PAN
    • Michalski R.S., and Kaufman K.A. Multistrategy data exploration using the INLEN system: recent advances. Sixth Symposium on Intelligent Information Systems. IIS'97, Zakopane, Poland (1997), IPI PAN
    • (1997) Sixth Symposium on Intelligent Information Systems
    • Michalski, R.S.1    Kaufman, K.A.2
  • 64
    • 0001214429 scopus 로고    scopus 로고
    • Data mining and knowledge discovery: a review of issues and a multistrategy approach
    • Michalski R.S., Bratko I., and Kubat M. (Eds), Wiley, London
    • Michalski R.S., and Kaufman K.A. Data mining and knowledge discovery: a review of issues and a multistrategy approach. In: Michalski R.S., Bratko I., and Kubat M. (Eds). Machine Learning and Data Mining: Methods and Applications (1998), Wiley, London 71-112
    • (1998) Machine Learning and Data Mining: Methods and Applications , pp. 71-112
    • Michalski, R.S.1    Kaufman, K.A.2
  • 65
    • 0039770011 scopus 로고    scopus 로고
    • Building knowledge scouts using KGL metalanguage
    • Michalski R.S., and Kaufman K. Building knowledge scouts using KGL metalanguage. Fund. Inform. 40 (2000) 433-447
    • (2000) Fund. Inform. , vol.40 , pp. 433-447
    • Michalski, R.S.1    Kaufman, K.2
  • 66
    • 84867754892 scopus 로고    scopus 로고
    • Learning patterns in noisy data: the AQ approach
    • Paliouras G., Karkaletsis V., and Spyropoulos C. (Eds), Springer-Verlag
    • Michalski R.S., and Kaufman K. Learning patterns in noisy data: the AQ approach. In: Paliouras G., Karkaletsis V., and Spyropoulos C. (Eds). Machine Learning and its Applications (2001), Springer-Verlag 22-38
    • (2001) Machine Learning and its Applications , pp. 22-38
    • Michalski, R.S.1    Kaufman, K.2
  • 67
    • 0004118074 scopus 로고
    • Selection of most representative training examples and incremental generation of VL1 hypotheses: The underlying methodology and the description of programs ESEL and AQ11
    • Report No. 867. Department of Computer Science, University of Illinois, Urbana
    • Michalski, R.S., Larson, J.B. (1978). Selection of most representative training examples and incremental generation of VL1 hypotheses: the underlying methodology and the description of programs ESEL and AQ11. Report No. 867. Department of Computer Science, University of Illinois, Urbana
    • (1978)
    • Michalski, R.S.1    Larson, J.B.2
  • 68
    • 0141629996 scopus 로고
    • Incremental generation of VL1 hypotheses: The underlying methodology and the description of program AQ11
    • ISG 83-5, UIUCDCS-F-83-905. Department of Computer Science, University of Illinois, Urbana
    • Michalski, R.S., Larson, J. (1983). Incremental generation of VL1 hypotheses: the underlying methodology and the description of program AQ11. Reports of the Intelligent Systems Group, ISG 83-5, UIUCDCS-F-83-905. Department of Computer Science, University of Illinois, Urbana
    • (1983) Reports of the Intelligent Systems Group
    • Michalski, R.S.1    Larson, J.2
  • 69
    • 0003046842 scopus 로고
    • Learning from observation: conceptual clustering
    • Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds), Tioga Publishing, Palo Alto, CA
    • Michalski R.S., and Stepp R. Learning from observation: conceptual clustering. In: Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds). Machine Learning: An Artificial Intelligence Approach (1983), Tioga Publishing, Palo Alto, CA
    • (1983) Machine Learning: An Artificial Intelligence Approach
    • Michalski, R.S.1    Stepp, R.2
  • 70
    • 0020266718 scopus 로고
    • A logic-based approach to conceptual database analysis
    • SCAMC-6, George Washington University, Medical Center, Washington, DC, IEEE Press
    • Michalski R.S., Baskin A.B., and Spackman K.A. A logic-based approach to conceptual database analysis. Sixth Annual Symposium on Computer Applications in Medical Care. SCAMC-6, George Washington University, Medical Center, Washington, DC (1982), IEEE Press 792-796
    • (1982) Sixth Annual Symposium on Computer Applications in Medical Care , pp. 792-796
    • Michalski, R.S.1    Baskin, A.B.2    Spackman, K.A.3
  • 71
    • 74049101270 scopus 로고
    • SPARC/E(V. 2), an eleusis rule generator and game player
    • ISG 85-11, UIUCDCS-F-85-941. Department of Computer Science, University of Illinois, Urbana
    • Michalski, R.S., Ko, H., Chen, K. (1985). SPARC/E(V. 2), an eleusis rule generator and game player. Reports of the Intelligent Systems Group, ISG 85-11, UIUCDCS-F-85-941. Department of Computer Science, University of Illinois, Urbana
    • (1985) Reports of the Intelligent Systems Group
    • Michalski, R.S.1    Ko, H.2    Chen, K.3
  • 72
    • 67649673346 scopus 로고
    • Qualitative prediction: a method and a program SPARC/G
    • Guetler C. (Ed), Academic Press, London
    • Michalski R.S., Ko H., and Chen K. Qualitative prediction: a method and a program SPARC/G. In: Guetler C. (Ed). Expert Systems (1986), Academic Press, London
    • (1986) Expert Systems
    • Michalski, R.S.1    Ko, H.2    Chen, K.3
  • 75
    • 67649640172 scopus 로고    scopus 로고
    • Learning user behavior and understanding style: A natural induction approach. Reports of the Machine Learning and Inference Laboratory. George Mason University, Fairfax, VA
    • In press
    • Michalski, R.S., Kaufman, K., Pietrzykowski, J., Wojtusiak, J., Sniezynski, B. (2005). Learning user behavior and understanding style: a natural induction approach. Reports of the Machine Learning and Inference Laboratory. George Mason University, Fairfax, VA. In press
    • (2005)
    • Michalski, R.S.1    Kaufman, K.2    Pietrzykowski, J.3    Wojtusiak, J.4    Sniezynski, B.5
  • 77
    • 0004109056 scopus 로고
    • Muggleton S. (Ed), Morgan Kaufmann
    • In: Muggleton S. (Ed). Inductive Logic Programming (1992), Morgan Kaufmann
    • (1992) Inductive Logic Programming
  • 82
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 83
    • 0001286553 scopus 로고
    • Probabilistic decision trees
    • Kodratoff Y., and Michalski R.S. (Eds), Morgan Kaufmann, San Mateo, CA
    • Quinlan J.R. Probabilistic decision trees. In: Kodratoff Y., and Michalski R.S. (Eds). Machine Learning: An Artificial Intelligence Approach, vol. III (1990), Morgan Kaufmann, San Mateo, CA 140-152
    • (1990) Machine Learning: An Artificial Intelligence Approach, vol. III , pp. 140-152
    • Quinlan, J.R.1
  • 85
    • 0006033840 scopus 로고
    • Incremental learning of concept descriptions: a method and experimental results
    • Reinke R.E., and Michalski R.S. Incremental learning of concept descriptions: a method and experimental results. Machine Intelligence 11 (1988) 263-288
    • (1988) Machine Intelligence , vol.11 , pp. 263-288
    • Reinke, R.E.1    Michalski, R.S.2
  • 87
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul L.K., and Roweis S.T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Machine Learning Res. 4 (2003) 119-155
    • (2003) J. Machine Learning Res. , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 90
    • 0001378602 scopus 로고
    • Conceptual clustering: inventing goal-oriented classifications of structured objects
    • Michalski R.S., Carbonell J., and Mitchell T.M. (Eds), Morgan Kaufmann
    • Stepp R., and Michalski R.S. Conceptual clustering: inventing goal-oriented classifications of structured objects. In: Michalski R.S., Carbonell J., and Mitchell T.M. (Eds). Machine Learning: An Artificial Intelligence Approach, vol. II (1986), Morgan Kaufmann
    • (1986) Machine Learning: An Artificial Intelligence Approach, vol. II
    • Stepp, R.1    Michalski, R.S.2
  • 91
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 93
    • 67649670604 scopus 로고    scopus 로고
    • Phons in spoken speech: a contribution to the computer analysis of spoken texts
    • Umann E. Phons in spoken speech: a contribution to the computer analysis of spoken texts. Pattern Recognition Image Anal. 7 1 (1997) 138-144
    • (1997) Pattern Recognition Image Anal. , vol.7 , Issue.1 , pp. 138-144
    • Umann, E.1
  • 96
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden concepts
    • Widmer G., and Kubat M. Learning in the presence of concept drift and hidden concepts. Machine Learning 23 (1996) 69-101
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 97
    • 0000599779 scopus 로고
    • Hypothesis-driven constructive induction in AQ17-HCI: a method and experiments
    • Wnek J., and Michalski R.S. Hypothesis-driven constructive induction in AQ17-HCI: a method and experiments. Machine Learning 14 (1994) 139-168
    • (1994) Machine Learning , vol.14 , pp. 139-168
    • Wnek, J.1    Michalski, R.S.2
  • 101
    • 67649658574 scopus 로고
    • Ekspertnyie Sistemy I Analiz Dannych
    • Akademia Nauk USSR, Sibirskoje Otdelenie, Institut Matematiki, Novosibirsk
    • Zagoruiko N.G. Ekspertnyie Sistemy I Analiz Dannych (Expert Systems and Data Analysis). Wychislitelnyje Sistemy vol. 144 (1991), Akademia Nauk USSR, Sibirskoje Otdelenie, Institut Matematiki, Novosibirsk
    • (1991) Wychislitelnyje Sistemy , vol.144
    • Zagoruiko, N.G.1
  • 102
    • 0343106173 scopus 로고    scopus 로고
    • Knowledge visualizer: A software system for visualizing data, patterns and their relationships
    • 97-14. George Mason University, Fairfax, VA
    • Zhang, Q. (1997). Knowledge visualizer: a software system for visualizing data, patterns and their relationships. Reports of the Machine Learning and Inference Laboratory MLI 97-14. George Mason University, Fairfax, VA
    • (1997) Reports of the Machine Learning and Inference Laboratory MLI
    • Zhang, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.