|
Volumn , Issue , 2006, Pages 219-230
|
A machine learning approach to predicting peptide fragmentation spectra
|
Author keywords
[No Author keywords available]
|
Indexed keywords
BOND CLEAVAGES;
DATA-DRIVEN APPROACH;
EXPERIMENTAL SPECTRA;
MACHINE LEARNING APPROACHES;
NEW APPROACHES;
NON-UNIFORM;
PEPTIDE DATABASE SEARCH;
PEPTIDE FRAGMENTATION;
PEPTIDE IDENTIFICATION;
POSTERIOR PROBABILITY;
PRECURSOR IONS;
PROTEOMICS;
SENSITIVITY AND SPECIFICITY;
SEQUEST;
TANDEM MASS;
IONS;
MASS SPECTROMETRY;
MOLECULAR BIOLOGY;
SEARCH ENGINES;
PEPTIDES;
AMINO ACID;
PEPTIDE;
ARTICLE;
ARTIFICIAL INTELLIGENCE;
BIOLOGY;
CHEMICAL STRUCTURE;
CHEMISTRY;
EVALUATION;
PROTEIN DATABASE;
STATISTICS;
TANDEM MASS SPECTROMETRY;
AMINO ACIDS;
ARTIFICIAL INTELLIGENCE;
COMPUTATIONAL BIOLOGY;
DATABASES, PROTEIN;
MOLECULAR STRUCTURE;
PEPTIDES;
TANDEM MASS SPECTROMETRY;
|
EID: 36348959863
PISSN: None
EISSN: None
Source Type: Conference Proceeding
DOI: None Document Type: Conference Paper |
Times cited : (47)
|
References (32)
|