-
1
-
-
58149211118
-
On some characterization of the t-distribution
-
R. B. Arellano-Valle and H. Bolfarine, "On some characterization of the t-distribution," Statist. Probab. Lett., vol. 25, pp. 79-85, 1995.
-
(1995)
Statist. Probab. Lett
, vol.25
, pp. 79-85
-
-
Arellano-Valle, R.B.1
Bolfarine, H.2
-
2
-
-
28044436543
-
Bayesian inference in spherical linear models: Robustness and conjugate analysis
-
R. B. Arellano-Valle, G. del Pino, and P. Iglesias, "Bayesian inference in spherical linear models: Robustness and conjugate analysis," J. Multivariate Anal., vol. 97, pp. 179-197, 2006.
-
(2006)
J. Multivariate Anal
, vol.97
, pp. 179-197
-
-
Arellano-Valle, R.B.1
del Pino, G.2
Iglesias, P.3
-
3
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol. 68, pp. 337-404, 1950.
-
(1950)
Trans. Amer. Math. Soc
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
5
-
-
31844446899
-
-
Univ. Chicago, Chicago, IL, Tech. Rep. TR-2004-06
-
M. Belkin, P. Niyugi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from examples," Univ. Chicago, Chicago, IL, Tech. Rep. TR-2004-06, 2004.
-
(2004)
Manifold regularization: A geometric framework for learning from examples
-
-
Belkin, M.1
Niyugi, P.2
Sindhwani, V.3
-
6
-
-
23044434528
-
On global-local artificial neural networks for function approximation
-
Jul
-
S. A. Billings and H.-L.Wei, "On global-local artificial neural networks for function approximation," IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 862-874, Jul. 2005.
-
(2005)
IEEE Trans. Neural Netw
, vol.16
, Issue.4
, pp. 862-874
-
-
Billings, S.A.1
Wei, H.L.2
-
8
-
-
36348946698
-
-
Dept. Statist, Univ. Florida, Gainesville, FL, Tech. Rep
-
S. Chakraborty, M. Ghosh, and B. K. Mallick, "Bayesian nonlinear regression for large p small n problems," Dept. Statist., Univ. Florida, Gainesville, FL, Tech. Rep., 2005.
-
(2005)
Bayesian nonlinear regression for large p small n problems
-
-
Chakraborty, S.1
Ghosh, M.2
Mallick, B.K.3
-
9
-
-
0034354040
-
Flexible empirical Bayes estimation for wavelets
-
M. Clyde and E. I. George, "Flexible empirical Bayes estimation for wavelets," J. Roy. Statist. Soc. Ser. B, vol. 62, no. 4, pp. 681-698, 2000.
-
(2000)
J. Roy. Statist. Soc. Ser. B
, vol.62
, Issue.4
, pp. 681-698
-
-
Clyde, M.1
George, E.I.2
-
10
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc. Ser. B vol. 39, no. 1, pp. 1-38, 1977.
-
(1977)
J. Roy. Statist. Soc. Ser. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
11
-
-
0034419669
-
Regularization networks and support vector machines
-
Berlin, Germany: Springer-Verlag
-
T. Evgeniou, M. Pontil, and T. Poggio, "Regularization networks and support vector machines," in Advances in Computational Mathematics Berlin, Germany: Springer-Verlag, 2000, vol. 13, pp. 1-50.
-
(2000)
Advances in Computational Mathematics
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
13
-
-
0141836275
-
Adaptive sparseness for supervised learning
-
Sep
-
M. Figueiredo, "Adaptive sparseness for supervised learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1150-1159, Sep. 2003.
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.25
, Issue.9
, pp. 1150-1159
-
-
Figueiredo, M.1
-
14
-
-
0004236492
-
-
3rd ed. Baltimore, MD: The Johns Hopkins University Press
-
G. H. Golub and C. F. VanLoan, Matrix Computations, 3rd ed. Baltimore, MD: The Johns Hopkins University Press, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
VanLoan, C.F.2
-
17
-
-
0002714543
-
Making large-scale SVM learning practical
-
T. Joachims, B. Schölkopf, C. Burges, and A. Smola, Eds, Cambridge, MA: MIT Press
-
T. Joachims, B. Schölkopf, C. Burges, and A. Smola, Eds., "Making large-scale SVM learning practical," in Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
-
-
-
18
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 14th Int. Conf. Mach. Learn., 1999, pp. 200-209.
-
(1999)
Proc. 14th Int. Conf. Mach. Learn
, pp. 200-209
-
-
Joachims, T.1
-
19
-
-
0007164668
-
Independent or uncorrelated disturbances in linear regression: An illustration of the difference
-
H. H. Kelejian and I. R. Prucha, "Independent or uncorrelated disturbances in linear regression: An illustration of the difference," Econom. Lett., vol. 19, pp. 717-726, 1985.
-
(1985)
Econom. Lett
, vol.19
, pp. 717-726
-
-
Kelejian, H.H.1
Prucha, I.R.2
-
20
-
-
0015000439
-
Some results on Tchebychean spline functions
-
G. Kimeldorf and G. Wahba, "Some results on Tchebychean spline functions," J. Math. Anal. Appl., vol. 33, pp. 82-95, 1971.
-
(1971)
J. Math. Anal. Appl
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.1
Wahba, G.2
-
22
-
-
0000217030
-
Normal/independent distributions and their applications in robust regression
-
K. Lange and J. S. Sinsheimer, "Normal/independent distributions and their applications in robust regression," J. Comput. Graph. Statist. vol. 2, no. 2, pp. 175-198, 1993.
-
(1993)
J. Comput. Graph. Statist
, vol.2
, Issue.2
, pp. 175-198
-
-
Lange, K.1
Sinsheimer, J.S.2
-
23
-
-
84950441032
-
Robust statistical modeling using the t distribution
-
K. L. Lange, R. J. A. Little, and J. M. G. Taylor, "Robust statistical modeling using the t distribution," J. Amer. Statist. Assoc. vol. 84, pp. 881-896, 1989.
-
(1989)
J. Amer. Statist. Assoc
, vol.84
, pp. 881-896
-
-
Lange, K.L.1
Little, R.J.A.2
Taylor, J.M.G.3
-
25
-
-
0000315742
-
The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence
-
C. Liu and D. B. Rubin, "The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence," Biometrika, vol. 81, pp. 633-648, 1994.
-
(1994)
Biometrika
, vol.81
, pp. 633-648
-
-
Liu, C.1
Rubin, D.B.2
-
28
-
-
0000251971
-
Maximum likelihood estimation via the ECM algorithm: A general framework
-
X. L. Meng and D. B. Rubin, "Maximum likelihood estimation via the ECM algorithm: A general framework," Biometrika, vol. 80, pp. 267-278, 1993.
-
(1993)
Biometrika
, vol.80
, pp. 267-278
-
-
Meng, X.L.1
Rubin, D.B.2
-
30
-
-
0002628667
-
Regression and classification using Gaussian process priors (with discussion)
-
R. M. Neal, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Eds, Oxford, U.K, Oxford Univ. Press
-
R. M. Neal, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Eds., "Regression and classification using Gaussian process priors (with discussion)," in Bayesian Statistics. Oxford, U.K.: Oxford Univ. Press, 1998, vol. 6, pp. 475-501.
-
(1998)
Bayesian Statistics
, vol.6
, pp. 475-501
-
-
-
31
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, no. 2/3, pp. 103-134, 2000.
-
(2000)
Mach. Learn
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
32
-
-
0002503187
-
Uncertainty analysis and other inference tools for complex computer codes (with discussion)
-
A. O'Hagan, M. C. Kennedy, and J. E. Oakley, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Eds, Oxford, U.K, Oxford Univ. Press
-
A. O'Hagan, M. C. Kennedy, and J. E. Oakley, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Eds., "Uncertainty analysis and other inference tools for complex computer codes (with discussion)," in Bayesian Statistics. Oxford, U.K.: Oxford Univ. Press, 1999, vol. 6, pp. 503-524.
-
(1999)
Bayesian Statistics
, vol.6
, pp. 503-524
-
-
-
33
-
-
0000219347
-
Exact and approximate posterior moments for a normal location parameter
-
L. R. Pericchi and A. F. M. Smith, "Exact and approximate posterior moments for a normal location parameter," J. Roy. Statist. Soc. Ser. B, vol. 54, no. 3, pp. 793-804, 1992.
-
(1992)
J. Roy. Statist. Soc. Ser. B
, vol.54
, Issue.3
, pp. 793-804
-
-
Pericchi, L.R.1
Smith, A.F.M.2
-
35
-
-
0026511708
-
Multivariate data analysis applied to low-density polyethylene reactors
-
B. Skagerberg, J. F. MacGregor, and C. Kiparissides, "Multivariate data analysis applied to low-density polyethylene reactors," Chemometrics Intell. Lab. Syst., vol. 14, pp. 341-356, 1992.
-
(1992)
Chemometrics Intell. Lab. Syst
, vol.14
, pp. 341-356
-
-
Skagerberg, B.1
MacGregor, J.F.2
Kiparissides, C.3
-
36
-
-
36349022465
-
Estimation of the parameters of a regression model with a multivariate T error variable
-
B. C. Sutradhar and M. M. Ali, "Estimation of the parameters of a regression model with a multivariate T error variable," Commun. Statist. - Theory Methods, vol. 71, pp. 400-405, 1976.
-
(1976)
Commun. Statist. - Theory Methods
, vol.71
, pp. 400-405
-
-
Sutradhar, B.C.1
Ali, M.M.2
-
37
-
-
84862602372
-
Semiparametric latent factor models
-
Y. W. Teh, M. Seeger, and M. I. Jordan, "Semiparametric latent factor models," in Proc. Workshop Artif. Intell. Statist., 2005, vol. 10, pp. 333-340.
-
(2005)
Proc. Workshop Artif. Intell. Statist
, vol.10
, pp. 333-340
-
-
Teh, Y.W.1
Seeger, M.2
Jordan, M.I.3
-
38
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
-
(2001)
J. Mach. Learn. Res
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
41
-
-
33746915070
-
On global-local artificial neural networks for function approximation
-
Sep
-
D. Wedge, D. Ingram, D. McLean, C. Mingham, and Z. Bandar, "On global-local artificial neural networks for function approximation," IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 942-952, Sep. 2006.
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.5
, pp. 942-952
-
-
Wedge, D.1
Ingram, D.2
McLean, D.3
Mingham, C.4
Bandar, Z.5
-
42
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
M. West, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Eds, Oxford, U.K, Oxford Univ. Press
-
M. West, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Eds., "Bayesian factor regression models in the "large p, small n" paradigm," in Bayesian Statistics. Oxford, U.K.: Oxford Univ. Press, 2003, vol. 7, pp. 723-732.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 723-732
-
-
-
43
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
C. K. I. Williams, M. Jordan, Ed, Cambridge, MA: MIT Press
-
C. K. I. Williams, M. Jordan, Ed., "Prediction with Gaussian processes: From linear regression to linear prediction and beyond," in Learning and Inference in Graphical Models. Cambridge, MA: MIT Press, 1999, pp. 599-621.
-
(1999)
Learning and Inference in Graphical Models
, pp. 599-621
-
-
-
44
-
-
0000723104
-
Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms
-
A. Zellner, "Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms," J. Amer. Statist. Assoc., vol. 71, pp. 400-405, 1976.
-
(1976)
J. Amer. Statist. Assoc
, vol.71
, pp. 400-405
-
-
Zellner, A.1
-
45
-
-
0031098254
-
Using wavelet network in nonparametric estimation
-
Mar
-
Q. H. Zhang, "Using wavelet network in nonparametric estimation," IEEE Trans. Neural Netw., vol. 8, no. 2, pp. 227-236, Mar. 1997.
-
(1997)
IEEE Trans. Neural Netw
, vol.8
, Issue.2
, pp. 227-236
-
-
Zhang, Q.H.1
|