메뉴 건너뛰기




Volumn 34, Issue 2, 2008, Pages 1274-1284

Clustering people according to their preference criteria

Author keywords

Adaptive assistants; Analysis of sensory data; Clustering; Learning preferences; Market segmentation

Indexed keywords

CLUSTERING ALGORITHMS; COMPUTER SUPPORTED COOPERATIVE WORK; CUSTOMER SATISFACTION; DATABASE SYSTEMS; DECISION MAKING; METRIC SYSTEM;

EID: 36148970079     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2006.12.005     Document Type: Article
Times cited : (27)

References (36)
  • 1
    • 14344261139 scopus 로고    scopus 로고
    • Bahamonde, A., Bayón, G. F., Díez, J., Quevedo, J. R., Luaces, O., del Coz, J. J. et al. (2004). Feature subset selection for learning preferences: a case study. In Proceedings of the 21st international conference on machine learning, ICML 2004, Banff, Canada, pp. 49-56.
  • 2
    • 0031640270 scopus 로고    scopus 로고
    • Basu, C., Hirsh, H., & Cohen, W. W. (1998). Recommendation as classification: using social and content-based information in recommendation. In Proceedings of the AAAI. pp. 714-720.
  • 4
    • 36148979999 scopus 로고    scopus 로고
    • Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the conference on uncertainty in artificial intelligence. pp. 43-52.
  • 6
    • 4544247588 scopus 로고    scopus 로고
    • Cheung, W. K., Kwok, J. T., Law, M. H., & Tsui, K. C. (2000). Mining customer preference ratings for product recommendations using the support vector machine and the latent class model. In Proceedings of the international conference on data mining methods and databases for engineering. pp. 601-610.
  • 8
    • 36148989095 scopus 로고    scopus 로고
    • Corney, D. (2002). Designing food with bayesian belief networks. In Proceedings of the international conference on adaptive computing in engineering design and manufacture. pp. 83-94.
  • 9
    • 36148971938 scopus 로고    scopus 로고
    • Crammer, K., & Singer, Y. (2001). Pranking with ranking. In Proceedings of the conference on neural information processing systems. pp. 641-647.
  • 11
    • 85182322799 scopus 로고    scopus 로고
    • Díez, J., Bayón, G. F., Quevedo, J. R., del Coz, J. J., Luaces, O., & Alonso, J. (2004). Discovering relevancies in very difficult regression problems: applications to sensory data analysis. In Proceedings of the European conference on artificial intelligence (ECAI '04), 2004, Valencia, Spain, pp. 993-994.
  • 13
    • 0036532753 scopus 로고    scopus 로고
    • A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles
    • Dubnov S., El-Yaniv R., Gdalyahu Y., Schneidman E., Tishby N., and Yona G. A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles. Machine Learning 47 (2002) 35-61
    • (2002) Machine Learning , vol.47 , pp. 35-61
    • Dubnov, S.1    El-Yaniv, R.2    Gdalyahu, Y.3    Schneidman, E.4    Tishby, N.5    Yona, G.6
  • 14
    • 36148947061 scopus 로고    scopus 로고
    • Dumais, S., Bharat, K., Joachims, T., & Weigend, A. (2003). Workshop on implicit measures of user interests and preferences. In ACM SIGIR conference, Toronto, Canada.
  • 15
    • 36148967625 scopus 로고    scopus 로고
    • Fiechter, C.N., & Rogers, S. (2000). Learning subjective functions with large margins. In Proceedings of the international conference on machine learning. pp. 287-294.
  • 16
    • 36148940186 scopus 로고    scopus 로고
    • Freund, Y., Iyer, R., Schapire, R.E., & Singer, Y. (1998). An efficient boosting algorithm for combining preferences. In Proceedings of the international conference on machine learning. pp. 170-178.
  • 17
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • Goldberg D., Nichols D., Oki B.M., and Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM 35 12 (1992) 61-70
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 18
    • 0035744711 scopus 로고    scopus 로고
    • The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry
    • Goyache F., Bahamonde A., Alonso J., López S., del Coz J.J., Quevedo J.R., et al. The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry. Trends in Food Science and Technology 12 10 (2001) 370-381
    • (2001) Trends in Food Science and Technology , vol.12 , Issue.10 , pp. 370-381
    • Goyache, F.1    Bahamonde, A.2    Alonso, J.3    López, S.4    del Coz, J.J.5    Quevedo, J.R.6
  • 19
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • Smola A., Bartlett P., Scholkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
    • Herbrich R., Graepel T., and Obermayer K. Large margin rank boundaries for ordinal regression. In: Smola A., Bartlett P., Scholkopf B., and Schuurmans D. (Eds). Advances in large margin classifiers (2000), MIT Press, Cambridge, MA 115-132
    • (2000) Advances in large margin classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 20
    • 84862271600 scopus 로고    scopus 로고
    • Hofmann, T., & Puzicha, J. (1999) Latent class models for collaborative filtering. In Proceedings of the international joint conference on artificial intelligence. pp. 688-693.
  • 22
    • 0242456822 scopus 로고    scopus 로고
    • Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the ACM conference on knowledge discovery and data mining.
  • 23
    • 22944464758 scopus 로고    scopus 로고
    • Luaces, O., Bayón, G. F., Quevedo, J. R., Díez, J., del Coz, J. J., Bahamonde, A. (2004). Analyzing sensory data using non-linear preference learning with feature subset selection. In Proceedings of the 15th European conference of machine learning, (ECML 04). Pisa, Italia, pp. 286-297.
  • 24
    • 36148970767 scopus 로고    scopus 로고
    • McJones, P. (1997). EachMovie collaborative filtering dataset. DEC (now Compaq) Systems Research Center. http://www.research.compaq.com/SRC/eachmovie/.
  • 26
    • 0033325071 scopus 로고    scopus 로고
    • A framework for collaborative filtering, content-based and demographic filtering
    • Pazzani M.J. A framework for collaborative filtering, content-based and demographic filtering. Artificial Intelligence Review 13 5-6 (1999) 393-408
    • (1999) Artificial Intelligence Review , vol.13 , Issue.5-6 , pp. 393-408
    • Pazzani, M.J.1
  • 27
    • 0031104254 scopus 로고    scopus 로고
    • Introduction to special section on recommender systems
    • Resnick P., and Varian H. Introduction to special section on recommender systems. Communications of the ACM 40 3 (1997) 56-58
    • (1997) Communications of the ACM , vol.40 , Issue.3 , pp. 56-58
    • Resnick, P.1    Varian, H.2
  • 28
    • 85030174634 scopus 로고    scopus 로고
    • Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an open architecture for collaborative filtering of networks. In Proceedings of the conference on computer supported cooperative work. pp. 175-186.
  • 29
    • 0942300409 scopus 로고    scopus 로고
    • The effects of slaughter weight, breed type and ageing time on beef meat quality using two different texture devices
    • Sañudo C., Macie E.S., Olleta J.L., Villarroel M., Panea B., and Albertí P. The effects of slaughter weight, breed type and ageing time on beef meat quality using two different texture devices. Meat Science 66 (2004) 925-932
    • (2004) Meat Science , vol.66 , pp. 925-932
    • Sañudo, C.1    Macie, E.S.2    Olleta, J.L.3    Villarroel, M.4    Panea, B.5    Albertí, P.6
  • 30
    • 0029179043 scopus 로고    scopus 로고
    • Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automatic "Word of Mouth". In Proceedings of the conference on human factors in computing systems. pp. 210-217.
  • 31
    • 36148943123 scopus 로고    scopus 로고
    • Shashua, A., & Levin, A. (2002). Ranking with large margin principle: two approaches. In Proceedings of the neural information and processing systems.
  • 32
    • 36148977124 scopus 로고    scopus 로고
    • Tesauro, G. (1989). Connectionist learning of expert preferences by comparison training. In Proceedings of the neural information and processing systems. pp. 99-106.
  • 33
    • 36148987120 scopus 로고    scopus 로고
    • Ungar, L.H., & Foster, D.P. (1998). Clustering methods for collaborative filtering. In Proceedings of the AAAI'98 workshop on recommendation systems. pp. 112-125.
  • 34
    • 36148976376 scopus 로고    scopus 로고
    • Utgoff, J.P., & Clouse, J. (1991). Two kinds of training information for evaluation function learning. In Proceedings of the AAAI'91. pp. 596-600.
  • 36
    • 36148949300 scopus 로고    scopus 로고
    • Weston, J., Elisseeff, A., BakIr, G., Sinz, F. (2006). SPIDER: object-orientated machine learning library. http://www.kyb.tuebingen.mpg.de/bs/people/spider/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.