메뉴 건너뛰기




Volumn 3201, Issue , 2004, Pages 286-297

Analyzing sensory data using non-linear preference learning with feature subset selection

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS; REGRESSION ANALYSIS; SENSORS; SENSORY PERCEPTION; STATISTICAL METHODS; TESTING; ARTIFICIAL INTELLIGENCE; FEATURE EXTRACTION;

EID: 22944464758     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-30115-8_28     Document Type: Conference Paper
Times cited : (18)

References (18)
  • 9
    • 32344451926 scopus 로고    scopus 로고
    • Workshop on implicit measures of user interests and preferences
    • Toronto, Canada
    • Dumais, S., Bharat, K., Joachims, T., Weigend, A., eds.: Workshop on implicit measures of user interests and preferences. In ACM SIGIR Conference, Toronto, Canada (2003)
    • (2003) ACM SIGIR Conference
    • Dumais, S.1    Bharat, K.2    Joachims, T.3    Weigend, A.4
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46 (2002) 389-422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 14
    • 0036643079 scopus 로고    scopus 로고
    • Metric-based methods for adaptive model selection and regularization
    • Schuurmans, D., Southey, F.: Metric-based methods for adaptive model selection and regularization. Machine Learning 48 (2002) 51-84
    • (2002) Machine Learning , vol.48 , pp. 51-84
    • Schuurmans, D.1    Southey, F.2
  • 18
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machines learning practical
    • B. Schölkopf, C. Burges, A.S., ed. MIT Press, Cambridge, MA
    • Joachims, T.: Making large-scale support vector machines learning practical. In B. Schölkopf, C. Burges, A.S., ed.: Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge, MA (1998)
    • (1998) Advances in Kernel Methods: Support Vector Machines
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.