메뉴 건너뛰기




Volumn 6565, Issue , 2007, Pages

Resampling approach for anomalous change detection

Author keywords

Anomaly detection; Change detection; Image registration; Machine learning; Remote sensing; Support vector machine

Indexed keywords

ENVIRONMENTAL IMPACT; IMAGE SENSORS; PIXELS; PROBLEM SOLVING; REMOTE SENSING; SUPPORT VECTOR MACHINES;

EID: 35948936064     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.719972     Document Type: Conference Paper
Times cited : (14)

References (26)
  • 2
    • 35948966064 scopus 로고    scopus 로고
    • Quoted on wikipedia
    • Quoted on wikipedia: http://en.wikiquote.org/wiki/Change.
  • 3
    • 0031374467 scopus 로고    scopus 로고
    • Subclutter target detection using sequences of thermal infrared multispectral imagery
    • A. Schaum and A. Stocker, "Subclutter target detection using sequences of thermal infrared multispectral imagery," Proc. SPIE 3071, pp. 12-22, 1997.
    • (1997) Proc. SPIE , vol.3071 , pp. 12-22
    • Schaum, A.1    Stocker, A.2
  • 5
    • 0037371011 scopus 로고    scopus 로고
    • Change detection in overhead imagery using neural networks
    • C. Clifton, "Change detection in overhead imagery using neural networks," Applied Intelligence 18, pp. 215-234, 2003.
    • (2003) Applied Intelligence , vol.18 , pp. 215-234
    • Clifton, C.1
  • 7
    • 0033707763 scopus 로고    scopus 로고
    • Automatic analysis of the difference image for unsupervised change detection
    • L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Trans. Geoscience and Remote Sensing 38, pp. 1171-1182, 2000.
    • (2000) IEEE Trans. Geoscience and Remote Sensing , vol.38 , pp. 1171-1182
    • Bruzzone, L.1    Prieto, D.F.2
  • 8
    • 33750600320 scopus 로고    scopus 로고
    • Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery
    • F. Melgani and Y. Bazi, "Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery," IEEE Geoscience and Remote Sensing Letters 3, pp. 457-461, 2006.
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , pp. 457-461
    • Melgani, F.1    Bazi, Y.2
  • 9
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • I. S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution," IEEE Trans. Acoustics, Speech, and Signal Processing 38, pp. 1760-1770, 1990.
    • (1990) IEEE Trans. Acoustics, Speech, and Signal Processing , vol.38 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 10
    • 10444268146 scopus 로고    scopus 로고
    • Hyperspectral change detection and supervised matched filtering based on covariance equalization
    • A. Schaum and A. Stocker, "Hyperspectral change detection and supervised matched filtering based on covariance equalization," Proc. SPIE 5425, pp. 77-90, 2004.
    • (2004) Proc. SPIE , vol.5425 , pp. 77-90
    • Schaum, A.1    Stocker, A.2
  • 12
    • 0031208638 scopus 로고    scopus 로고
    • Learning distributions by their density levels: A paradigm for learning without a teacher
    • S. Ben-David and M. Lindenbaum, "Learning distributions by their density levels: A paradigm for learning without a teacher," J. Computer and System Sciences 55, pp. 171-182, 1997.
    • (1997) J. Computer and System Sciences , vol.55 , pp. 171-182
    • Ben-David, S.1    Lindenbaum, M.2
  • 14
    • 79955833476 scopus 로고    scopus 로고
    • Density level detection is classification
    • L. K. Saul, Y. Weiss, and L. Bottou, eds, pp, MIT Press, Cambridge, MA
    • I. Steinwart, D. Hush, and C. Scovel, "Density level detection is classification," in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, eds., pp. 1337-1344, MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 1337-1344
    • Steinwart, I.1    Hush, D.2    Scovel, C.3
  • 15
    • 35948959063 scopus 로고    scopus 로고
    • D. Tax and R. Duin, Data domain description by support vectors, in Proc. ESANN99, M. Verleysen, ed., pp. 251-256, D. Facto Press, (Brussels), 1999.
    • D. Tax and R. Duin, "Data domain description by support vectors," in Proc. ESANN99, M. Verleysen, ed., pp. 251-256, D. Facto Press, (Brussels), 1999.
  • 16
    • 27544499740 scopus 로고    scopus 로고
    • Detecting a malicious executable without prior knowledge of its patterns
    • D. M. Cai, J. Theiler, and M. Gokhale, "Detecting a malicious executable without prior knowledge of its patterns," Proc. SPIE 5812, pp. 1-12, 2005.
    • (2005) Proc. SPIE , vol.5812 , pp. 1-12
    • Cai, D.M.1    Theiler, J.2    Gokhale, M.3
  • 18
    • 1642475063 scopus 로고    scopus 로고
    • Resampling approach for anomaly detection in multispectral images
    • J. Theiler and D. M. Cai, "Resampling approach for anomaly detection in multispectral images," Proc. SPIE 5093, pp. 230-240, 2003.
    • (2003) Proc. SPIE , vol.5093 , pp. 230-240
    • Theiler, J.1    Cai, D.M.2
  • 19
    • 0035168125 scopus 로고    scopus 로고
    • On the statistics of hyperspectral imaging data
    • D. Manolakis, D. Marden, J. Kerekes, and G. Shaw, "On the statistics of hyperspectral imaging data," Proc. SPIE 4381, pp. 308-316, 2001.
    • (2001) Proc. SPIE , vol.4381 , pp. 308-316
    • Manolakis, D.1    Marden, D.2    Kerekes, J.3    Shaw, G.4
  • 20
    • 1642515081 scopus 로고    scopus 로고
    • Modeling hyperspectral imaging data
    • D. B. Marden and D. Manolakis, "Modeling hyperspectral imaging data," Proc. SPIE 5093, pp. 253-262, 2003.
    • (2003) Proc. SPIE , vol.5093 , pp. 253-262
    • Marden, D.B.1    Manolakis, D.2
  • 21
    • 10444280883 scopus 로고    scopus 로고
    • Using elliptically contoured distributions to model hyperspectral imaging data and generate statistically similar synthetic data
    • D. B. Marden and D. Manolakis, "Using elliptically contoured distributions to model hyperspectral imaging data and generate statistically similar synthetic data," Proc. SPIE 5425, pp. 558-572, 2004.
    • (2004) Proc. SPIE , vol.5425 , pp. 558-572
    • Marden, D.B.1    Manolakis, D.2
  • 23
    • 32044455277 scopus 로고    scopus 로고
    • Vectorized image segmentation via trixel agglomeration
    • L. Prasad and A. Skourikhine, "Vectorized image segmentation via trixel agglomeration," Pattern Recognition 39, pp. 501-514, 2006.
    • (2006) Pattern Recognition , vol.39 , pp. 501-514
    • Prasad, L.1    Skourikhine, A.2
  • 24
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axisparallel rectangles
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Prez, "Solving the multiple instance problem with axisparallel rectangles," Artificial Intelligence 89, pp. 31-71, 1997.
    • (1997) Artificial Intelligence , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Prez, T.3
  • 25
    • 27544499326 scopus 로고    scopus 로고
    • Kernel RX: A new nonlinear anomaly detector
    • H. Kwon and N. M. Nasrabadi, "Kernel RX: a new nonlinear anomaly detector," Proc. SPIE 5806, pp. 35-46, 2005.
    • (2005) Proc. SPIE , vol.5806 , pp. 35-46
    • Kwon, H.1    Nasrabadi, N.M.2
  • 26
    • 84899016906 scopus 로고    scopus 로고
    • Active learning for anomaly and rare-category detection
    • L. K. Saul, Y. Weiss, and L. Bottou, eds, pp, MIT Press, Cambridge, MA
    • D. Pelleg and A. W. Moore, "Active learning for anomaly and rare-category detection," in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, eds., pp. 1073-1080, MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 1073-1080
    • Pelleg, D.1    Moore, A.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.