메뉴 건너뛰기




Volumn 16, Issue 5, 2007, Pages 399-415

Bayesian methods for latent trait modelling of longitudinal data

Author keywords

[No Author keywords available]

Indexed keywords

BAYES THEOREM; CORRELATION ANALYSIS; HUMAN; LONGITUDINAL STUDY; MATHEMATICAL MODEL; MATHEMATICAL VARIABLE; MONTE CARLO METHOD; MULTIVARIATE ANALYSIS; OUTCOME ASSESSMENT; PROBABILITY; REVIEW; UNCERTAINTY; VARIANCE;

EID: 35649006830     PISSN: 09622802     EISSN: None     Source Type: Journal    
DOI: 10.1177/0962280206075309     Document Type: Review
Times cited : (27)

References (74)
  • 2
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-74.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 3
    • 0031656414 scopus 로고    scopus 로고
    • Estimating a treatment effect from multidimensional longitudinal data
    • Gray SM, Brookmeyer R. Estimating a treatment effect from multidimensional longitudinal data. Biometrics 1998; 54: 976-88.
    • (1998) Biometrics , vol.54 , pp. 976-988
    • Gray, S.M.1    Brookmeyer, R.2
  • 4
    • 1542532216 scopus 로고    scopus 로고
    • Multidimensional longitudinal data: Estimating a treatment effect from continuous, discrete or time-to-event response variables
    • Gray SM, Brookmeyer R. Multidimensional longitudinal data: estimating a treatment effect from continuous, discrete or time-to-event response variables. Journal of the American Statistical Association 2000; 95: 396-406.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 396-406
    • Gray, S.M.1    Brookmeyer, R.2
  • 5
    • 0242595643 scopus 로고    scopus 로고
    • Dynamic latent trait models for multidimensional longitudinal data
    • Dunson DB. Dynamic latent trait models for multidimensional longitudinal data. Journal of the American Statistical Association 2003; 98: 555-63.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 555-563
    • Dunson, D.B.1
  • 11
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes HF, West M. Bayesian model assessment in factor analysis. Statistica Sinica 2004;14: 41-67.
    • (2004) Statistica Sinica , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 13
    • 0141905064 scopus 로고    scopus 로고
    • Scaled marginal models for multiple continuous outcomes
    • Roy J, Lin XH, Ryan LM. Scaled marginal models for multiple continuous outcomes. Biostatistics 2003; 4: 371-83.
    • (2003) Biostatistics , vol.4 , pp. 371-383
    • Roy, J.1    Lin, X.H.2    Ryan, L.M.3
  • 14
    • 0001391849 scopus 로고
    • A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators
    • Muthń B. A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika 1984; 49: 115-32.
    • (1984) Psychometrika , vol.49 , pp. 115-132
    • Muthń, B.1
  • 15
    • 84950440636 scopus 로고
    • Bivariate latent variable models for clustered discrete and continuous outcomes
    • Catalano PJ, Ryan LM. Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association 1992; 87: 651-8.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 651-658
    • Catalano, P.J.1    Ryan, L.M.2
  • 16
    • 0442327764 scopus 로고    scopus 로고
    • A correlated probit model for joint modeling of clustered binary and continuous responses
    • Gueorguieva RV, Agresti A. A correlated probit model for joint modeling of clustered binary and continuous responses. Journal of the American Statistical Association 2001; 96: 1102-12.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1102-1112
    • Gueorguieva, R.V.1    Agresti, A.2
  • 17
    • 85153267946 scopus 로고    scopus 로고
    • Dunson DB, Chen Z, Harry J. A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes. Biometrics 2003; 59: 521-30.
    • Dunson DB, Chen Z, Harry J. A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes. Biometrics 2003; 59: 521-30.
  • 19
    • 29344446857 scopus 로고    scopus 로고
    • Longitudinal profiling of health care units based on continuous and discrete patient outcomes
    • Daniels MJ, Normand S-LT. Longitudinal profiling of health care units based on continuous and discrete patient outcomes. Biostatistics 2006; 7: 1-15.
    • (2006) Biostatistics , vol.7 , pp. 1-15
    • Daniels, M.J.1    Normand, S.-L.T.2
  • 20
    • 0033636129 scopus 로고    scopus 로고
    • Latent variable models for longitudinal data with multiple continuous outcomes
    • Roy J, Lin XH. Latent variable models for longitudinal data with multiple continuous outcomes. Biometrics 2000; 56: 1047-54.
    • (2000) Biometrics , vol.56 , pp. 1047-1054
    • Roy, J.1    Lin, X.H.2
  • 22
    • 0035103375 scopus 로고    scopus 로고
    • Factor analytic models of clustered multivariate data with informative censoring
    • Dunson DB, Perrealt SD. Factor analytic models of clustered multivariate data with informative censoring. Biometrics 2001; 57: 302-8.
    • (2001) Biometrics , vol.57 , pp. 302-308
    • Dunson, D.B.1    Perrealt, S.D.2
  • 23
    • 0029028456 scopus 로고
    • An approximate generalized linear-model with random effects for informatively missing data
    • Follmann D, Wu M. An approximate generalized linear-model with random effects for informatively missing data. Biometrics 1995; 51: 151-68.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follmann, D.1    Wu, M.2
  • 24
    • 5044220677 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal profiles: Pitfalls of the random-effects approach
    • Fieuws S, Verbeke G. Joint modelling of multivariate longitudinal profiles: pitfalls of the random-effects approach. Statistics in Medicine 2004; 23: 3093-104.
    • (2004) Statistics in Medicine , vol.23 , pp. 3093-3104
    • Fieuws, S.1    Verbeke, G.2
  • 25
    • 0036489043 scopus 로고    scopus 로고
    • Analysis of multivariate longitudinal outcomes with nonignorable dropout and missing covariates: Changes in methadone treatment practices
    • Roy J, Lin XH. Analysis of multivariate longitudinal outcomes with nonignorable dropout and missing covariates: changes in methadone treatment practices. Journal of the American Statistical Association 2002; 97: 40-52.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 40-52
    • Roy, J.1    Lin, X.H.2
  • 26
    • 2942677478 scopus 로고    scopus 로고
    • Latent pattern mixture models for informative intermittent missing data in longitudinal studies
    • Lin HQ, McCulloch CE, Rosenheck RA. Latent pattern mixture models for informative intermittent missing data in longitudinal studies. Biometrics 2004; 60: 295-305.
    • (2004) Biometrics , vol.60 , pp. 295-305
    • Lin, H.Q.1    McCulloch, C.E.2    Rosenheck, R.A.3
  • 27
    • 0036971505 scopus 로고    scopus 로고
    • Bayesian modeling of incidence and progression of disease from cross-sectional data
    • Dunson DB, Baird DD. Bayesian modeling of incidence and progression of disease from cross-sectional data. Biometrics 2002; 58: 813-22.
    • (2002) Biometrics , vol.58 , pp. 813-822
    • Dunson, D.B.1    Baird, D.D.2
  • 32
    • 33746386808 scopus 로고    scopus 로고
    • Structural equation modeling with the SEM package in R
    • Fox J. Structural equation modeling with the SEM package in R. Structural Equation Modeling 2006; 13: 465-86.
    • (2006) Structural Equation Modeling , vol.13 , pp. 465-486
    • Fox, J.1
  • 33
    • 0034364839 scopus 로고    scopus 로고
    • Latent variable models with mixed continuous and polytomous data
    • Shi JQ, Lee SY. Latent variable models with mixed continuous and polytomous data. Journal of the Royal Statistical Society B 2000; 62: 77-87.
    • (2000) Journal of the Royal Statistical Society B , vol.62 , pp. 77-87
    • Shi, J.Q.1    Lee, S.Y.2
  • 34
    • 17244380648 scopus 로고    scopus 로고
    • Maximum likelihood analysis of a two-level nonlinear structural equation model with fixed covariates
    • Lee SY, Song XY. Maximum likelihood analysis of a two-level nonlinear structural equation model with fixed covariates. Journal of Educational and Behavioral Statistics 2005; 30: 1-26.
    • (2005) Journal of Educational and Behavioral Statistics , vol.30 , pp. 1-26
    • Lee, S.Y.1    Song, X.Y.2
  • 36
    • 19844369721 scopus 로고    scopus 로고
    • Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
    • Lee SY, Song XY Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research 2004; 39: 653-86.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 653-686
    • Lee, S.Y.1    Song, X.Y.2
  • 37
    • 0000517212 scopus 로고
    • Bayesian residual analysis for binary response regression models
    • Albert J, Chib S. Bayesian residual analysis for binary response regression models. Biometrika 1995; 82: 747-59.
    • (1995) Biometrika , vol.82 , pp. 747-759
    • Albert, J.1    Chib, S.2
  • 38
    • 15044358532 scopus 로고    scopus 로고
    • Multiple imputation for model checking: Completed-data plots with missing and latent data
    • Gelman A, Van Mechelen I, Verbeke, G, Heitjan DF, Meulders M. Multiple imputation for model checking: completed-data plots with missing and latent data. Biometrics 2005; 61: 74-85.
    • (2005) Biometrics , vol.61 , pp. 74-85
    • Gelman, A.1    Van Mechelen, I.2    Verbeke, G.3    Heitjan, D.F.4    Meulders, M.5
  • 40
    • 0032329779 scopus 로고    scopus 로고
    • Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    • Arminger G. A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 1998; 63: 271-300.
    • (1998) Psychometrika , vol.63 , pp. 271-300
    • Arminger, G.A.1
  • 41
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing of structural equation models
    • Scheines R, Hoijtink H, Boomsma A. Bayesian estimation and testing of structural equation models. Psychometrika 1999; 64: 37-52.
    • (1999) Psychometrika , vol.64 , pp. 37-52
    • Scheines, R.1    Hoijtink, H.2    Boomsma, A.3
  • 42
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 2006; 515-534.
    • (2006) Bayesian Analysis , pp. 515-534
    • Gelman, A.1
  • 44
    • 18044381191 scopus 로고    scopus 로고
    • Statistical analysis of nonlinear structural equation models with continuous and polytomous data
    • Lee SY, Zhu HT. Statistical analysis of nonlinear structural equation models with continuous and polytomous data. British Journal of Mathematical & Statistical Psychology 2000; 53: 209-32.
    • (2000) British Journal of Mathematical & Statistical Psychology , vol.53 , pp. 209-232
    • Lee, S.Y.1    Zhu, H.T.2
  • 45
    • 0035998148 scopus 로고    scopus 로고
    • Maximum likelihood estimation of nonlinear structural equation models
    • Lee SY, Zhu HT. Maximum likelihood estimation of nonlinear structural equation models. Psychometrika 2002; 67: 189-210.
    • (2002) Psychometrika , vol.67 , pp. 189-210
    • Lee, S.Y.1    Zhu, H.T.2
  • 47
    • 0034345467 scopus 로고    scopus 로고
    • Generalized latent trait models
    • Moustaki I, Knott M. Generalized latent trait models. Psychometrika 2000; 65: 391-411.
    • (2000) Psychometrika , vol.65 , pp. 391-411
    • Moustaki, I.1    Knott, M.2
  • 48
    • 0034360861 scopus 로고    scopus 로고
    • Bayesian latent variable models for clustered mixed outcomes
    • Dunson DB. Bayesian latent variable models for clustered mixed outcomes. Journal of the Royal Statistical Society B 2000; 62: 355-66.
    • (2000) Journal of the Royal Statistical Society B , vol.62 , pp. 355-366
    • Dunson, D.B.1
  • 49
    • 2942596810 scopus 로고    scopus 로고
    • Generalized common spatial factor model
    • Wang FJ, Wall MM. Generalized common spatial factor model. Biostatistics 2003; 4: 569-82.
    • (2003) Biostatistics , vol.4 , pp. 569-582
    • Wang, F.J.1    Wall, M.M.2
  • 50
    • 27744588060 scopus 로고    scopus 로고
    • Generalized linear latent variable models for repeated measures of spatially correlated multivariate data
    • Zhu J, Eickhoff JC, Yan P. Generalized linear latent variable models for repeated measures of spatially correlated multivariate data. Biometrics 2005; 61: 674-83.
    • (2005) Biometrics , vol.61 , pp. 674-683
    • Zhu, J.1    Eickhoff, J.C.2    Yan, P.3
  • 51
    • 26644457216 scopus 로고    scopus 로고
    • Generalized spatial structural equation models
    • Liu X, Wall MM, Hodges JS. Generalized spatial structural equation models. Biostatistics 2005; 6: 539-57.
    • (2005) Biostatistics , vol.6 , pp. 539-557
    • Liu, X.1    Wall, M.M.2    Hodges, J.S.3
  • 52
    • 2942599458 scopus 로고    scopus 로고
    • Bayesian factor analysis for spatially correlated data, with application to summarizing area-level material deprivation from census data
    • Hogan JW, Tchernis, R. Bayesian factor analysis for spatially correlated data, with application to summarizing area-level material deprivation from census data. Journal of the American Statistical Association 2004; 99: 314-24.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 314-324
    • Hogan, J.W.1    Tchernis, R.2
  • 53
    • 21644435901 scopus 로고    scopus 로고
    • Bayesian latent variable models for mixed discrete outcomes
    • Dunson DB, Herring AH. Bayesian latent variable models for mixed discrete outcomes. Biostatistics 2005; 6: 11-25.
    • (2005) Biostatistics , vol.6 , pp. 11-25
    • Dunson, D.B.1    Herring, A.H.2
  • 54
    • 0035345442 scopus 로고    scopus 로고
    • Bayesian analysis of mixtures of factor analyzers
    • Utsugi A, Kumagai T, Bayesian analysis of mixtures of factor analyzers. Neural Computation 2001; 13: 993-1002.
    • (2001) Neural Computation , vol.13 , pp. 993-1002
    • Utsugi, A.1    Kumagai, T.2
  • 55
    • 0037262840 scopus 로고    scopus 로고
    • Mixtures of factor analysers: Bayesian estimation and inference by stochastic simulation
    • Fokoue E, Titterington, DM. Mixtures of factor analysers: Bayesian estimation and inference by stochastic simulation. Machine Learning 2003; 50: 73-94.
    • (2003) Machine Learning , vol.50 , pp. 73-94
    • Fokoue, E.1    Titterington, D.M.2
  • 57
    • 0035286078 scopus 로고    scopus 로고
    • Zhu HT, Lee SY. A Bayesian analysis of finite mixtures in the LISREL model. Psychometrika 2001; 66: 133-52.
    • Zhu HT, Lee SY. A Bayesian analysis of finite mixtures in the LISREL model. Psychometrika 2001; 66: 133-52.
  • 58
  • 59
    • 35648958099 scopus 로고    scopus 로고
    • Ferguson TS. A Bayesian analysis of some nonparametric problems. Annals of Statistics 1973; 1: 209-30.
    • Ferguson TS. A Bayesian analysis of some nonparametric problems. Annals of Statistics 1973; 1: 209-30.
  • 60
    • 0000780135 scopus 로고
    • Prior distributions on spaces of probability measures
    • Ferguson TS. Prior distributions on spaces of probability measures. Annals of Statistics 1974; 2: 615-29.
    • (1974) Annals of Statistics , vol.2 , pp. 615-629
    • Ferguson, T.S.1
  • 61
    • 0000904732 scopus 로고    scopus 로고
    • A semiparametric Bayesian model for randomised block designs
    • Bush CA. MacEachern SN. A semiparametric Bayesian model for randomised block designs. Biometrika 1996; 83: 275-85.
    • (1996) Biometrika , vol.83 , pp. 275-285
    • Bush, C.A.1    MacEachern, S.N.2
  • 62
    • 0031662186 scopus 로고    scopus 로고
    • A semiparametric Bayesian approach to the random effects model
    • Kleinman KP, Ibrahim JG. A semiparametric Bayesian approach to the random effects model. Biometrics 1998; 54: 921-38.
    • (1998) Biometrics , vol.54 , pp. 921-938
    • Kleinman, K.P.1    Ibrahim, J.G.2
  • 63
    • 0036967726 scopus 로고    scopus 로고
    • Independent and identically distributed Monte Carlo algorithms for semiparametric linear mixed models
    • Ishwaran H, Takahara G. Independent and identically distributed Monte Carlo algorithms for semiparametric linear mixed models. Journal of the American Statistical Association 2002; 97: 1154 -66.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 1154-1166
    • Ishwaran, H.1    Takahara, G.2
  • 64
    • 33749617419 scopus 로고    scopus 로고
    • Bayesian dynamic modeling of latent trait distributions
    • Dunson DB. Bayesian dynamic modeling of latent trait distributions. Biostatistics 2006; 7: 551-568.
    • (2006) Biostatistics , vol.7 , pp. 551-568
    • Dunson, D.B.1
  • 65
    • 33845512314 scopus 로고    scopus 로고
    • Bayesian semiparametric dynamic frailty models for multiple event time data
    • In press
    • Pennell ML, Dunson DB. Bayesian semiparametric dynamic frailty models for multiple event time data. Biometrics 2006. In press.
    • (2006) Biometrics
    • Pennell, M.L.1    Dunson, D.B.2
  • 66
    • 0038207146 scopus 로고    scopus 로고
    • Bayesian latent variable models for median regression on multiple outcomes
    • Dunson DB, Watson M, Taylor JA. Bayesian latent variable models for median regression on multiple outcomes. Biometrics 2003; 59: 296-304.
    • (2003) Biometrics , vol.59 , pp. 296-304
    • Dunson, D.B.1    Watson, M.2    Taylor, J.A.3
  • 67
    • 0032391470 scopus 로고    scopus 로고
    • An estimating equations approach for the LISCOMP model
    • Reboussin BA, Liang KY. An estimating equations approach for the LISCOMP model. Psychometrika 1998; 63: 165-82.
    • (1998) Psychometrika , vol.63 , pp. 165-182
    • Reboussin, B.A.1    Liang, K.Y.2
  • 68
    • 0036822202 scopus 로고    scopus 로고
    • Effects of covariance misspecification in a latent variable model for multiple outcomes
    • Sammel MD, Ryan LM. Effects of covariance misspecification in a latent variable model for multiple outcomes. Statistica Sinica 2002; 12: 1207-22.
    • (2002) Statistica Sinica , vol.12 , pp. 1207-1222
    • Sammel, M.D.1    Ryan, L.M.2
  • 69
    • 12344329387 scopus 로고    scopus 로고
    • Structural equation modeling with heavy tailed distributions
    • Yuan KH, Bender PM, Chan W. Structural equation modeling with heavy tailed distributions. Psychometrika 2004; 69: 421-36.
    • (2004) Psychometrika , vol.69 , pp. 421-436
    • Yuan, K.H.1    Bender, P.M.2    Chan, W.3
  • 71
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995; 82: 711-32.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 72
    • 33745256442 scopus 로고    scopus 로고
    • Bayesian covariance selection in generalized linear mixed models
    • Cai B, Dunson DB. Bayesian covariance selection in generalized linear mixed models. Biometrics 2006; 62: 446-457.
    • (2006) Biometrics , vol.62 , pp. 446-457
    • Cai, B.1    Dunson, D.B.2
  • 73
    • 0038810230 scopus 로고    scopus 로고
    • Model comparison of nonlinear structural equation models with fixed covariates
    • Lee SY, Song XY. Model comparison of nonlinear structural equation models with fixed covariates. Psychometrika 2003; 68: 27-47.
    • (2003) Psychometrika , vol.68 , pp. 27-47
    • Lee, S.Y.1    Song, X.Y.2
  • 74
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman, A, Meng XL. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statistical Science 1998; 13: 163-85.
    • (1998) Statistical Science , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.