메뉴 건너뛰기




Volumn 71, Issue 1-3, 2007, Pages 244-269

Learning algorithm of wavelet network based on sampling theory

Author keywords

Convergence of algorithm; Overfitting; Wavelet neural networks

Indexed keywords

COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; LEARNING ALGORITHMS; LOW PASS FILTERS; SPURIOUS SIGNAL NOISE; WAVELET TRANSFORMS;

EID: 35648999424     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.01.001     Document Type: Article
Times cited : (34)

References (39)
  • 1
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Akaike H. A new look at statistical model identification. IEEE Trans. Automat. Control AC-19 6 (1974) 716-723
    • (1974) IEEE Trans. Automat. Control , vol.AC-19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 29644437508 scopus 로고    scopus 로고
    • A note on sample size determination for Akaike Information Criterion (AIC) approach to clinical data analysis
    • Akifumi Y., Mamoru N., and Makio I. A note on sample size determination for Akaike Information Criterion (AIC) approach to clinical data analysis. Commun. Stat.-Theory Methods 34 12 (2005) 2331-2343
    • (2005) Commun. Stat.-Theory Methods , vol.34 , Issue.12 , pp. 2331-2343
    • Akifumi, Y.1    Mamoru, N.2    Makio, I.3
  • 3
    • 0141573197 scopus 로고    scopus 로고
    • L. Beiwei, H. W. William, Simplified nonlinear principal component analysis, in: Proceedings of the International Joint Conference on Neural Networks, 2003, pp. 759-763.
  • 4
    • 0141633850 scopus 로고    scopus 로고
    • P. Chandra, Y. Singh, Regularization and feedforward artificial neural network training with noise, in: Proceedings of the International Joint Conference on Neural Networks, 2003, pp. 2366-2371.
  • 5
    • 18944379429 scopus 로고    scopus 로고
    • L. ChangGyoon, K. Kangchui, K. Eungkon, Modeling for an adaptive wavelet network parameter learning using genetic algorithms, in: Proceedings of the Fifteenth IASTED International Conference on Modeling and Simulation, CA, USA, 2004, pp. 55-59.
  • 7
    • 0041310976 scopus 로고    scopus 로고
    • A hybrid Bayesian back-propagation neural network approach to multivariate modeling
    • Chua C.G., and Goh A.T.C. A hybrid Bayesian back-propagation neural network approach to multivariate modeling. Int. J. Numer. Anal. Methods Geomech. 27 8 (2003) 651-667
    • (2003) Int. J. Numer. Anal. Methods Geomech. , vol.27 , Issue.8 , pp. 651-667
    • Chua, C.G.1    Goh, A.T.C.2
  • 10
    • 0028698255 scopus 로고    scopus 로고
    • C. Daniel, O. Umit, Wavelet neural networks: a design perspective, in: IEEE International Symposium on Intelligent Control-Proceedings, 1994, pp. 376-381.
  • 12
    • 35649022467 scopus 로고    scopus 로고
    • M. David, Gaussian processes-a replacement for supervised neural networks 〈http://wol.ra.phy.cam.ac.uk/mackay/GP/〉, 1997.
  • 13
    • 0037508527 scopus 로고    scopus 로고
    • Application of Bayesian trained RBF networks to nonlinear time-series modeling
    • Erhard R. Application of Bayesian trained RBF networks to nonlinear time-series modeling. Signal Process. 83 7 (2003) 1393-1410
    • (2003) Signal Process. , vol.83 , Issue.7 , pp. 1393-1410
    • Erhard, R.1
  • 15
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feed-forward neural networks
    • Jarmo I., Joni-Kristian K., and Jouni L. Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17 1 (2003) 93-105
    • (2003) Neural Process. Lett. , vol.17 , Issue.1 , pp. 93-105
    • Jarmo, I.1    Joni-Kristian, K.2    Jouni, L.3
  • 16
    • 26844554927 scopus 로고    scopus 로고
    • X. Jinhua, W.C. Ho. Daniel, A constructive algorithm for wavelet neural networks, First International Conference on Natural Computation, Changsha, China, 2005, pp. 730-739.
  • 17
    • 0029323369 scopus 로고
    • Wavelet neural networks for function learning
    • Jun Z., Walter G.G., and Miao Y. Wavelet neural networks for function learning. IEEE Trans. Signal Process. 43 6 (1995) 1485-1496
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.6 , pp. 1485-1496
    • Jun, Z.1    Walter, G.G.2    Miao, Y.3
  • 18
    • 28344451301 scopus 로고    scopus 로고
    • C. Kai, H. Yoshio, An adaptive hybrid wavelet neural network and its application, in: Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2004, Shenyang, China, 2004, pp. 73-86.
  • 19
    • 0036130853 scopus 로고    scopus 로고
    • Subspace information criterion for nonquadratic regularizers-model selection for sparse regressors
    • Koji T., Masashi S., and Klaus-Robert M. Subspace information criterion for nonquadratic regularizers-model selection for sparse regressors. IEEE Trans. Neural Networks 13 1 (2002) 70-80
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 70-80
    • Koji, T.1    Masashi, S.2    Klaus-Robert, M.3
  • 21
    • 35648995685 scopus 로고    scopus 로고
    • H. Min, C. Baotong, A novel learning algorithm for wavelet neural networks, in: First International Conference on Natural Computation, ICNC, Changsha, China, 2005, pp. 1-7.
  • 22
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for an artificial neural network model
    • Murata N., Yoshizawa S., and Amari S. Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks 5 6 (1994) 865-872
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 23
    • 0035191103 scopus 로고    scopus 로고
    • Error correcting memorization learning for noisy training examples
    • Nakashima A., Hirabayashi A., and Ogawa H. Error correcting memorization learning for noisy training examples. Neural Networks 14 1 (2001) 79-92
    • (2001) Neural Networks , vol.14 , Issue.1 , pp. 79-92
    • Nakashima, A.1    Hirabayashi, A.2    Ogawa, H.3
  • 25
    • 0031098254 scopus 로고    scopus 로고
    • Using wavelet network in nonparameters estimation
    • Qinghua Z. Using wavelet network in nonparameters estimation. IEEE Trans. Neural Networks 8 (1997) 227-236
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 227-236
    • Qinghua, Z.1
  • 26
    • 0141929508 scopus 로고    scopus 로고
    • S. Qingmei, G. Yongchao, A stepwise updating algorithm for multiresolution wavelet neural networks, in: Proceedings of the International Conference on Wavelet Analysis and Its Applications (WAA), Chongqing, China, 2003, pp. 633-638.
  • 28
    • 85178294737 scopus 로고    scopus 로고
    • K. Seong-Joo, K. Taek-Yong, S. Jae-yong, J. Hong-Tae, Design of the scaling-wavelet neural network using genetic algorithm, in: Proceedings of the International Joint Conference on Neural Networks, Honolulu, HI, 2002, pp. 2174-2179.
  • 29
    • 33646086957 scopus 로고    scopus 로고
    • An improved Akaike information criterion for state-space model selection
    • Thomas B., and Joseph C.E. An improved Akaike information criterion for state-space model selection. Comput. Stat. Data Anal. 50 10 (2006) 2635-2654
    • (2006) Comput. Stat. Data Anal. , vol.50 , Issue.10 , pp. 2635-2654
    • Thomas, B.1    Joseph, C.E.2
  • 30
    • 33745937122 scopus 로고    scopus 로고
    • H.Q. Thuan, S. Rudy, Effective neural network pruning using cross-validation, in: Proceedings of the International Joint Conference on Neural Networks, 2005, pp. 972-977.
  • 31
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Tomaso P., and Federico G. Networks for approximation and learning. Proc. IEEE 78 (1990) 1481-1497
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Tomaso, P.1    Federico, G.2
  • 32
    • 0034862846 scopus 로고    scopus 로고
    • Developing an efficient cross validation strategy to determine classifier performance (CVCP)
    • Van Der, Merwe N.T., and Hoffman A.J. Developing an efficient cross validation strategy to determine classifier performance (CVCP). Proc. Int. Jt. Conf. Neural Networks 3 (2001) 1663-1668
    • (2001) Proc. Int. Jt. Conf. Neural Networks , vol.3 , pp. 1663-1668
    • Van Der1    Merwe, N.T.2    Hoffman, A.J.3
  • 33
    • 33645990044 scopus 로고    scopus 로고
    • Learning hybrid Bayesian networks using mixtures of truncated exponentials
    • Vanessa R., Rafael R., and Antonio S. Learning hybrid Bayesian networks using mixtures of truncated exponentials. Int. J. Approx. Reason. 42 1-2 (2006) 54-68
    • (2006) Int. J. Approx. Reason. , vol.42 , Issue.1-2 , pp. 54-68
    • Vanessa, R.1    Rafael, R.2    Antonio, S.3
  • 34
    • 20844460153 scopus 로고    scopus 로고
    • C.E. Vasios, G.K. Matsopoulos, E.M. Ventouras, K.S. Nikita, N. Uzunoglu, Cross-validation and neural network architecture selection for the classification of intracranial current sources, in: 2004 Seventh Seminar on Neural Network Applications in Electrical Engineering-Proceedings, NEUREL 2004, pp. 151-158.
  • 35
    • 0034284052 scopus 로고    scopus 로고
    • Initialization by selection for wavelet network training
    • Yacine O., and Gerard D. Initialization by selection for wavelet network training. Neurocomputing 34 (2002) 131-143
    • (2002) Neurocomputing , vol.34 , pp. 131-143
    • Yacine, O.1    Gerard, D.2
  • 36
    • 4344623228 scopus 로고    scopus 로고
    • J. Yaochu, O. Tatsuya, S. Bernhard, Neural network regularization and ensembling using multi-objective evolutionary algorithms, in: Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, 2004, pp. 1-8.
  • 37
    • 33745194616 scopus 로고    scopus 로고
    • An adaptive learning algorithm for a wavelet neural network
    • Yevqeniy B., Nataliya L., Iryna P., and Olena V. An adaptive learning algorithm for a wavelet neural network. Expert Systems 22 5 (2005) 235-240
    • (2005) Expert Systems , vol.22 , Issue.5 , pp. 235-240
    • Yevqeniy, B.1    Nataliya, L.2    Iryna, P.3    Olena, V.4
  • 38
    • 33644966132 scopus 로고    scopus 로고
    • Approximated non-tensor pre-wavelets neural network based on compound training algorithm
    • Ying L., Zhidong D., and Xi Z. Approximated non-tensor pre-wavelets neural network based on compound training algorithm. J. Inform. Comput. Sci. 2 4 (2005) 715-722
    • (2005) J. Inform. Comput. Sci. , vol.2 , Issue.4 , pp. 715-722
    • Ying, L.1    Zhidong, D.2    Xi, Z.3
  • 39
    • 10444281569 scopus 로고    scopus 로고
    • L. Yunhui, L. Siwei, L. Aijun, Y. Hanbin, A new model selection criterion based on information geometry, in: 2004 Seventh International Conference on Signal Processing Proceedings, ICSP, 2004, pp. 1561-1564.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.