메뉴 건너뛰기




Volumn 2, Issue 4, 2005, Pages 715-722

Approximated non-tensor pre-wavelets neural network based on compound training algorithm

Author keywords

Adaptive pre wavelet; Bivariate non tensor product; Extended Kalman filters; Neural network

Indexed keywords

APPROXIMATION THEORY; FUNCTIONS; KALMAN FILTERING; LEARNING ALGORITHMS; WAVELET TRANSFORMS;

EID: 33644966132     PISSN: 15487741     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (13)
  • 3
    • 0032203999 scopus 로고    scopus 로고
    • A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering and classification
    • L. A. Feldkamp and G. V. Puskorius, A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering and classification, Proceedings of the IEEE 86 (1998) 2259-2277.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2259-2277
    • Feldkamp, L.A.1    Puskorius, G.V.2
  • 5
    • 33644955025 scopus 로고    scopus 로고
    • A construct method of bivariate compactly supported non-separate wavelet
    • Ying Li, Zhou Yun-shi, A construct method of bivariate compactly supported non-separate wavelet, Journal of Jilin University (Science Edition) 42 (1) (2004) 43-49.
    • (2004) Journal of Jilin University (Science Edition) , vol.42 , Issue.1 , pp. 43-49
    • Ying, L.1    Zhou, Y.-S.2
  • 6
    • 0029777583 scopus 로고    scopus 로고
    • On-line training of recurrent neural networks with continuous topology adaptation
    • D. Obradovic, On-line training of recurrent neural networks with continuous topology adaptation, IEEE Trans. Neural Networks 7 (1996) 222-228.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 222-228
    • Obradovic, D.1
  • 7
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • G. Puskorius, L. Feldkamp, Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks, IEEE Trans. Neural Networks 5 (1994) 279-297.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 279-297
    • Puskorius, G.1    Feldkamp, L.2
  • 8
    • 0022471098 scopus 로고
    • Learning representations of back-propagation errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations of back-propagation errors, Nature 323 (1986) 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 9
    • 0026923239 scopus 로고
    • Optimal filtering algorithms for fast learning in feedforward neural networks
    • S. Shah, F. Palmieri, M. Datum, Optimal filtering algorithms for fast learning in feedforward neural networks, Neural Networks 5 (1992) 779-787.
    • (1992) Neural Networks , vol.5 , pp. 779-787
    • Shah, S.1    Palmieri, F.2    Datum, M.3
  • 10
    • 0036826054 scopus 로고    scopus 로고
    • Training radial basis neural networks with the extended Kalman
    • D. Simon, Training radial basis neural networks with the extended Kalman, Neurocomputing 48 (2002) 455-475.
    • (2002) Neurocomputing , vol.48 , pp. 455-475
    • Simon, D.1
  • 11
    • 0032777345 scopus 로고    scopus 로고
    • On the Kalman filtering method in neural network training and pruning
    • J. Sum, C. Leung, G. Young, W. Kan, On the Kalman filtering method in neural network training and pruning, IEEE Trans. Neural Networks 10 (1999) 161-166.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 161-166
    • Sum, J.1    Leung, C.2    Young, G.3    Kan, W.4
  • 13
    • 0032681148 scopus 로고    scopus 로고
    • A fast U-D factorization-based learning algorithm with applications to nonlinear system modeling and identification
    • Y. Zhang, X. Li, A fast U-D factorization-based learning algorithm with applications to nonlinear system modeling and identification, IEEE Trans. Neural Networks 10 (1999) 930-938.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 930-938
    • Zhang, Y.1    Li, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.