메뉴 건너뛰기




Volumn 83, Issue 7, 2003, Pages 1393-1410

Application of Bayesian trained RBF networks to nonlinear time-series modeling

Author keywords

Bayesian learning; Nonlinear modeling; Oscillator model

Indexed keywords

LEARNING SYSTEMS; NONLINEAR SYSTEMS; RADIAL BASIS FUNCTION NETWORKS; SIGNAL TO NOISE RATIO; TIME SERIES ANALYSIS;

EID: 0037508527     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0165-1684(03)00088-4     Document Type: Article
Times cited : (38)

References (45)
  • 2
    • 0033340740 scopus 로고    scopus 로고
    • Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network
    • Abdulhai B., Ritchie S.G. Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network. Transp. Res. C. 7:1999;261-280.
    • (1999) Transp. Res. C , vol.7 , pp. 261-280
    • Abdulhai, B.1    Ritchie, S.G.2
  • 3
  • 5
  • 6
    • 0032204920 scopus 로고    scopus 로고
    • A tight upper bound on the gain of linear and nonlinear predictors for stationary stochastic processes
    • November
    • Bernhard H.-P. A tight upper bound on the gain of linear and nonlinear predictors for stationary stochastic processes. IEEE Trans. Signal Process. 43:November 1998;2909-2917.
    • (1998) IEEE Trans. Signal Process. , vol.43 , pp. 2909-2917
    • Bernhard, H.-P.1
  • 9
    • 0029489301 scopus 로고
    • A fully Kalman-trained radial basis function network for nonlinear speech modeling
    • Perth, Australia
    • M. Birgmeier, A fully Kalman-trained radial basis function network for nonlinear speech modeling, in: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp. 259-264.
    • (1995) Proceedings of the IEEE International Conference on Neural Networks , pp. 259-264
    • Birgmeier, M.1
  • 12
    • 0036566461 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic signals using a normalized radial basis function network
    • Cowper M.R., Mulgrew B., Unsworth C.P. Nonlinear prediction of chaotic signals using a normalized radial basis function network. Signal Process. 82:2002;775-789.
    • (2002) Signal Process. , vol.82 , pp. 775-789
    • Cowper, M.R.1    Mulgrew, B.2    Unsworth, C.P.3
  • 14
    • 0003931473 scopus 로고
    • Quarterly Progress Status Report 4, Speech Transmission Laboratory/Royal Institute of Technology, Stockholm, Sweden
    • G. Fant, J. Liljencrants, Q.-G. Lin, A four parameter model of glottal flow, Quarterly Progress Status Report 4, Speech Transmission Laboratory/Royal Institute of Technology, Stockholm, Sweden, 1985.
    • (1985) A Four Parameter Model of Glottal Flow
    • Fant, G.1    Liljencrants, J.2    Lin, Q.-G.3
  • 17
    • 0000810560 scopus 로고    scopus 로고
    • Practical implementation of nonlinear time series methods: The TISEAN package
    • Hegger R., Kantz H., Schreiber T. Practical implementation of nonlinear time series methods. the TISEAN package CHAOS. 9:1999;413-435.
    • (1999) CHAOS , vol.9 , pp. 413-435
    • Hegger, R.1    Kantz, H.2    Schreiber, T.3
  • 18
    • 84990424053 scopus 로고
    • Synthesis of voiced sounds from a two-mass model of the vocal cords
    • Ishizaka K., Flanagan J.L. Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Systems Tech. J. 51:1972;1233-1267.
    • (1972) Bell Systems Tech. J. , vol.51 , pp. 1233-1267
    • Ishizaka, K.1    Flanagan, J.L.2
  • 23
    • 0028698662 scopus 로고
    • Bayesian non-linear modelling for the prediction competition
    • MacKay D.J.C. Bayesian non-linear modelling for the prediction competition. ASHRAE Trans. 100:1994;1053-1062.
    • (1994) ASHRAE Trans. , vol.100 , pp. 1053-1062
    • MacKay, D.J.C.1
  • 24
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Comput. 4(3):1992;415-447.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 25
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • MacKay D.J.C. The evidence framework applied to classification networks. Neural Comput. 4(5):1992;698-714.
    • (1992) Neural Comput. , vol.4 , Issue.5 , pp. 698-714
    • MacKay, D.J.C.1
  • 26
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backprop networks
    • MacKay D.J.C. A practical Bayesian framework for backprop networks. Neural Comput. 4(3):1992;448-472.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 27
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • MacKay D.J.C. Comparison of approximate methods for handling hyperparameters. Neural Comput. 11(5):1999;1035-1068.
    • (1999) Neural Comput. , vol.11 , Issue.5 , pp. 1035-1068
    • MacKay, D.J.C.1
  • 29
    • 0035426629 scopus 로고    scopus 로고
    • Synthesising natural-sounding vowels using a nonlinear dynamical model
    • Mann I., McLaughlin S. Synthesising natural-sounding vowels using a nonlinear dynamical model. Signal Process. 81(8):2001;1743-1756.
    • (2001) Signal Process. , vol.81 , Issue.8 , pp. 1743-1756
    • Mann, I.1    McLaughlin, S.2
  • 32
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • November
    • Moon T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6):November 1996;47-60.
    • (1996) IEEE Signal Process. Mag. , vol.13 , Issue.6 , pp. 47-60
    • Moon, T.K.1
  • 34
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • Berlin: Springer
    • Neal R.M. Bayesian learning for neural networks. Lecture Notes in Statistics. Vol. 118:1996;Springer, Berlin.
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.M.1
  • 35
    • 0003207159 scopus 로고
    • A theory of networks for approximation and learning
    • Massachusetts Institute of Technology
    • T. Poggio, F. Girosi, A theory of networks for approximation and learning, A.I. Memo 1140, Massachusetts Institute of Technology, 1989.
    • (1989) A.I. Memo , vol.1140
    • Poggio, T.1    Girosi, F.2
  • 37
    • 0037850427 scopus 로고    scopus 로고
    • Synthese von Vokalen mit einem Oszillatormodell unter Berücksichtigung der stimmlosen Anregung
    • Wolfgang Hess, Karlheinz Stöber (Eds.), Rüdiger Hoffmann: Studientexte zur Sprachkommunikation
    • E. Rank, Synthese von Vokalen mit einem Oszillatormodell unter Berücksichtigung der stimmlosen Anregung, in: Wolfgang Hess, Karlheinz Stöber (Eds.), Zwölfte Konferenz Elektronische Sprachsignalverarbeitung ESSV, Rüdiger Hoffmann: Studientexte zur Sprachkommunikation, Band 22, 2001, pp. 136-143.
    • (2001) Zwölfte Konferenz Elektronische Sprachsignalverarbeitung ESSV , vol.22 , pp. 136-143
    • Rank, E.1
  • 38
    • 0344145224 scopus 로고    scopus 로고
    • Nonlinear synthesis of vowels in the LP residual domain with a regularized RBF network
    • J. Mira, A. Prieto (Eds.), Proceedings of the Sixth International Work-Conference on Artificial and Natural Neural Networks, IWANN2001, part II, Granada, Spain, Springer, Berlin
    • E. Rank, G. Kubin, Nonlinear synthesis of vowels in the LP residual domain with a regularized RBF network, in: J. Mira, A. Prieto (Eds.), Proceedings of the Sixth International Work-Conference on Artificial and Natural Neural Networks, IWANN2001, Lecture Notes in Computer Science, Vol. 2085, part II, Granada, Spain, Springer, Berlin, 2001, pp. 746-753.
    • (2001) Lecture Notes in Computer Science , vol.2085 , pp. 746-753
    • Rank, E.1    Kubin, G.2
  • 41
    • 0035127703 scopus 로고    scopus 로고
    • Applying the harmonic plus noise model in concatenative synthesis
    • Stylianou Y. Applying the harmonic plus noise model in concatenative synthesis. IEEE Trans. Speech Audio Process. 9(1):2001;21-29.
    • (2001) IEEE Trans. Speech Audio Process. , vol.9 , Issue.1 , pp. 21-29
    • Stylianou, Y.1
  • 42
    • 0000779360 scopus 로고
    • On the numerical determination of the dimension of an attractor
    • D. Rand, & L.S. Young. Dynamic Systems and Turbulence, Berlin: Springer
    • Takens F. On the numerical determination of the dimension of an attractor. Rand D., Young L.S. Dynamic Systems and Turbulence. Warwick 1980 Lecture Notes in Mathematics. Vol. 898:1981;366-381 Springer, Berlin.
    • (1981) Warwick 1980 Lecture Notes in Mathematics , vol.898 , pp. 366-381
    • Takens, F.1
  • 43
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1:2001;211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 45
    • 0034353084 scopus 로고    scopus 로고
    • Bayesian MLP neural networks for image analysis
    • Vehtari A., Lampinen J. Bayesian MLP neural networks for image analysis. Pattern Recognition Lett. 21:2000;1183-1191.
    • (2000) Pattern Recognition Lett. , vol.21 , pp. 1183-1191
    • Vehtari, A.1    Lampinen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.