메뉴 건너뛰기




Volumn 37, Issue 2-3, 2004, Pages 199-209

A maximum entropy approach for collaborative filtering

Author keywords

Collaborative filtering; Iterative scaling; Latent clustering; Maximum entropy; Naive Bayes

Indexed keywords

DATA MINING; DATABASE SYSTEMS; ERROR ANALYSIS; INFORMATION RETRIEVAL; ITERATIVE METHODS; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; PATTERN RECOGNITION; PROBABILITY; STATISTICAL METHODS; WEBSITES;

EID: 3543101946     PISSN: 13875485     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:VLSI.0000027485.11890.15     Document Type: Conference Paper
Times cited : (11)

References (16)
  • 7
  • 8
    • 0043054809 scopus 로고
    • Information theory and statistical mechanics
    • R.D. Rosenkrantz (Ed.), Dordrecht, The Netherlands: Kluwer Academic Publishers, (Reprint of the original 1957 papers in Physical Review)
    • E.T. Jaynes, "Information Theory and Statistical Mechanics," in Papers on Probability, Statistics and Statistical Physics, R.D. Rosenkrantz (Ed.), Dordrecht, The Netherlands: Kluwer Academic Publishers, 1989 (Reprint of the original 1957 papers in Physical Review).
    • (1989) Papers on Probability, Statistics and Statistical Physics
    • Jaynes, E.T.1
  • 10
    • 0001435073 scopus 로고    scopus 로고
    • Approximate maximum entropy joint feature inference consistent with arbitrary lower-order probability constraints: Application to statistical classification
    • D.J. Miller and L. Yan, "Approximate Maximum Entropy Joint Feature Inference Consistent with Arbitrary Lower-Order Probability Constraints: Application to Statistical Classification," Neural Computation, vol. 12, 2000, pp. 2175-2207.
    • (2000) Neural Computation , vol.12 , pp. 2175-2207
    • Miller, D.J.1    Yan, L.2
  • 13
    • 0034187697 scopus 로고    scopus 로고
    • General statistical inference for discrete and mixed spaces by an approximate application of the maximum entropy principle
    • L. Yan and D.J. Miller, "General Statistical Inference for Discrete and Mixed Spaces by an Approximate Application of the Maximum Entropy Principle," IEEE Trans. on Neural Networks, vol. 11, 2000, pp. 558-573.
    • (2000) IEEE Trans. on Neural Networks , vol.11 , pp. 558-573
    • Yan, L.1    Miller, D.J.2
  • 15
    • 0025601254 scopus 로고
    • On the minimum probability of error of classification with incomplete patterns
    • Q. Zhu, "On the Minimum Probability of Error of Classification with Incomplete Patterns," Pattern Recognition, vol. 23, 1990, pp. 1281-1290.
    • (1990) Pattern Recognition , vol.23 , pp. 1281-1290
    • Zhu, Q.1
  • 16
    • 0000806445 scopus 로고    scopus 로고
    • Minimax entropy principle and its application to texture modeling
    • S.C. Zhu, Y.N. Wu, and D. Mumford, "Minimax Entropy Principle and its Application to Texture Modeling," Neural Computation, vol. 9, 1997, pp. 1627-1660.
    • (1997) Neural Computation , vol.9 , pp. 1627-1660
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.