메뉴 건너뛰기




Volumn , Issue , 2001, Pages 243-252

Approximate maximum entropy learning for classification: Comparison with other methods

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; ENTROPY; LEARNING SYSTEMS; VECTORS;

EID: 0035784022     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (8)
  • 1
    • 0020879288 scopus 로고
    • A method of computing generalized Bayesian probability values for expert systems
    • P. Cheeseman. A method of computing generalized Bayesian probability values for expert systems. In Proc. of the Eighth Intl. Joint Conf. on AI, volume 1, pages 198-202, 1983.
    • (1983) Proc. of the Eighth Intl. Joint Conf. on AI , vol.1 , pp. 198-202
    • Cheeseman, P.1
  • 3
    • 0012062308 scopus 로고
    • Kutato: An entropy-driven system for construction of probabilistic expert systems from databases
    • E. Herskovits and G., Cooper. Kutato: an entropy-driven system for construction of probabilistic expert systems from databases. In Uncertainty in AI 6, pages 117 125, 1991.
    • (1991) Uncertainty in AI 6 , vol.6 , pp. 117-125
    • Herskovits, E.1    Cooper, G.2
  • 4
    • 0001566920 scopus 로고
    • Approximating discrete probability distributions
    • H.H. Ku and S. Kullback. Approximating discrete probability distributions. IEEE Trans. on Info. Theory, 15(4):444-447, 1969.
    • (1969) IEEE Trans. on Info. Theory , vol.15 , Issue.4 , pp. 444-447
    • Ku, H.H.1    Kullback, S.2
  • 6
    • 0001435073 scopus 로고    scopus 로고
    • Approximate maximum entropy joint feature inference consistent with arbitrary lower order probability constraints: Application to statistical classification
    • D.J. Miller and L. Yan. Approximate maximum entropy joint feature inference consistent with arbitrary lower order probability constraints: application to statistical classification. Neural Computation, vol. 12, no. 9, pages. 2175-2208, 2000.
    • (2000) Neural Computation , vol.12 , Issue.9 , pp. 2175-2208
    • Miller, D.J.1    Yan, L.2
  • 7
    • 0012099198 scopus 로고    scopus 로고
    • An approximate maximum entropy method for classification and more general inference: Relation to other maxent methods and nave bayes
    • D.J. Miller and L. Yan. An Approximate Maximum Entropy Method for Classification and More General Inference: Relation to Other Maxent Methods and Nave Bayes. Proceedings of 34th Conference on information Sciences and Systems, vol. 1, pages 1-6, 2000.
    • (2000) Proceedings of 34th Conference on information Sciences and Systems , vol.1 , pp. 1-6
    • Miller, D.J.1    Yan, L.2
  • 8
    • 0034187697 scopus 로고    scopus 로고
    • General statistical inference for discrete and mixed spaces by an approximate application of the maximum entropy principle
    • L. Yen and D.J. Miller. General statistical inference for discrete and mixed spaces by an approximate application of the maximum entropy principle, IEEE Trans. on Neural Networks, vol. 11, no. 3, pp. 558-573, 2000.
    • (2000) IEEE Trans. on Neural Networks , vol.11 , Issue.3 , pp. 558-573
    • Yen, L.1    Miller, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.