메뉴 건너뛰기




Volumn 12, Issue 9, 2000, Pages 2175-2207

Approximate maximum entropy joint feature inference consistent with arbitrary lower-order probability constraints: Application to statistical classification

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001435073     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015105     Document Type: Article
Times cited : (9)

References (38)
  • 5
    • 0027629328 scopus 로고
    • Vector quantization with complexity costs
    • Buhmann, J., & Kuhnel, H. (1994). Vector quantization with complexity costs. IEEE Trans. on Info. Theory, 39, 1133-1145.
    • (1994) IEEE Trans. on Info. Theory , vol.39 , pp. 1133-1145
    • Buhmann, J.1    Kuhnel, H.2
  • 6
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Trans. on Knowl. and Data Eng., 8, 195-210.
    • (1996) IEEE Trans. on Knowl. and Data Eng. , vol.8 , pp. 195-210
    • Buntine, W.1
  • 7
    • 0004147631 scopus 로고
    • Unpublished doctoral dissertation, Stanford University, Stanford, CA
    • Burg, J. P. (1975). Maximum entropy spectral analysis. Unpublished doctoral dissertation, Stanford University, Stanford, CA.
    • (1975) Maximum Entropy Spectral Analysis
    • Burg, J.P.1
  • 8
    • 0020879288 scopus 로고
    • A method of computing generalized bayesian probability values for expert systems
    • Cheeseman, P. (1983). A method of computing generalized Bayesian probability values for expert systems. In Proc. of the Eighth Intl. Joint Conf. on AI (Vol. 1, pp. 198-202).
    • (1983) Proc. of the Eighth Intl. Joint Conf. on AI , vol.1 , pp. 198-202
    • Cheeseman, P.1
  • 10
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory, 14, 462-467.
    • (1968) IEEE Trans. on Info. Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 11
    • 34249832377 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 13
    • 0000130823 scopus 로고
    • A fast procedure for model search in multidimensional contingency tables
    • Edwards, D., & Havranek, T. (1985). A fast procedure for model search in multidimensional contingency tables. Biometrica, 72, 339-351.
    • (1985) Biometrica , vol.72 , pp. 339-351
    • Edwards, D.1    Havranek, T.2
  • 16
    • 0040973441 scopus 로고    scopus 로고
    • Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting
    • Friedman, N., Goldszmidt, M., & Lee, T. J. (1998). Bayesian network classification with continuous attributes: getting the best of both discretization and parametric fitting. In Proc. of the Intl. Conf. on Machine Learning (pp. 179-187).
    • (1998) Proc. of the Intl. Conf. on Machine Learning , pp. 179-187
    • Friedman, N.1    Goldszmidt, M.2    Lee, T.J.3
  • 18
    • 0001551844 scopus 로고
    • Supervised learning from incomplete data via an EM approach
    • J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Mateo, CA: Morgan Kauffman
    • Ghahramani, Z., & Jordan, M. I. (1994). Supervised learning from incomplete data via an EM approach. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6 (pp. 120-127). San Mateo, CA: Morgan Kauffman.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 120-127
    • Ghahramani, Z.1    Jordan, M.I.2
  • 20
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, A., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, A.2    Chickering, D.M.3
  • 21
    • 0012062308 scopus 로고
    • Kutato: An entropy-driven system for construction of probabilistic expert systems from databases
    • . P. Bonissone, M. Henrione, L. N. Kanal, & J. F. Lemmer (Eds.), Amsterdam: Elsevier
    • Herskovits, E., & Cooper, G. (1991). Kutato: An entropy-driven system for construction of probabilistic expert systems from databases. In P. P. Bonissone, M. Henrione, L. N. Kanal, & J. F. Lemmer (Eds.), Uncertainty in AI 6(pp. 117-125). Amsterdam: Elsevier.
    • (1991) Uncertainty in AI 6 , vol.6 , pp. 117-125
    • Herskovits, E.1    Cooper, G.2
  • 23
    • 0003641246 scopus 로고
    • On the effective implementation of the iterative proportional fitting procedure
    • Jirousek, R., & Preucil, S. (1995). On the effective implementation of the iterative proportional fitting procedure. Comp. Stat. and Data Anal., 19, 177-189.
    • (1995) Comp. Stat. and Data Anal. , vol.19 , pp. 177-189
    • Jirousek, R.1    Preucil, S.2
  • 24
    • 0031169205 scopus 로고    scopus 로고
    • Optimal approximation of discrete probability distribution with kth-order dependency and its application to com-bining multiple classifiers
    • Kang, H., Kim, K., & Kim, J. H. (1997). Optimal approximation of discrete probability distribution with kth-order dependency and its application to com-bining multiple classifiers. Patt. Rec. Letters, 18, 515-523.
    • (1997) Patt. Rec. Letters , vol.18 , pp. 515-523
    • Kang, H.1    Kim, K.2    Kim, J.H.3
  • 25
    • 0001566920 scopus 로고
    • Approximating discrete probability distributions
    • Ku, H. H., & Kullback, S. (1969). Approximating discrete probability distributions. IEEE Trans. on Info. Theory, 15(4), 444-447.
    • (1969) IEEE Trans. on Info. Theory , vol.15 , Issue.4 , pp. 444-447
    • Ku, H.H.1    Kullback, S.2
  • 26
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the Amer. Stat. Assoc., 88, 125-134.
    • (1993) Journal of the Amer. Stat. Assoc. , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 27
    • 84898959728 scopus 로고    scopus 로고
    • Estimating dependency structure as a hidden variable
    • M. Kearns, M. Jordan, & S. Solla (Eds.), Cambridge, MA: MIT Press
    • Meila, M., & Jordan, M. I. (1998). Estimating dependency structure as a hidden variable. In M. Kearns, M. Jordan, & S. Solla (Eds.), Advances in neural information processing systems, 10 (pp. 584-590). Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 584-590
    • Meila, M.1    Jordan, M.I.2
  • 28
    • 0030412880 scopus 로고    scopus 로고
    • A global optimization technique for statistical classifier design
    • Miller, D. J., Rao, A. V., Rose, K., & Gersho, A. (1996). A global optimization technique for statistical classifier design. IEEE Trans. on Sig. Proc., 44, 3108-3122.
    • (1996) IEEE Trans. on Sig. Proc. , vol.44 , pp. 3108-3122
    • Miller, D.J.1    Rao, A.V.2    Rose, K.3    Gersho, A.4
  • 29
    • 0033327709 scopus 로고    scopus 로고
    • Critic-driven ensemble classification
    • Miller, D. J. & Yan, L. (1999). Critic-driven ensemble classification. IEEE Trans. on Sig. Proc., 47, 2833-2844.
    • (1999) IEEE Trans. on Sig. Proc. , vol.47 , pp. 2833-2844
    • Miller, D.J.1    Yan, L.2
  • 30
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. M. (1992). Connectionist learning of belief networks. Art. Intell., 56, 71-113.
    • (1992) Art. Intell. , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 34
    • 84899025015 scopus 로고
    • Vector quantization by deterministic annealing
    • Rose, K., Gurewitz, E., & Fox, G. C. (1992). Vector quantization by deterministic annealing. IEEE Trans. on Info. Theory, 38, 1249-1257.
    • (1992) IEEE Trans. on Info. Theory , vol.38 , pp. 1249-1257
    • Rose, K.1    Gurewitz, E.2    Fox, G.C.3
  • 35
    • 0018877134 scopus 로고
    • Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
    • Shore, J. E., & Johnson, R. W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. on Info. Theory, 26, 26-37.
    • (1980) IEEE Trans. on Info. Theory , vol.26 , pp. 26-37
    • Shore, J.E.1    Johnson, R.W.2
  • 36
    • 0033337022 scopus 로고    scopus 로고
    • General statistical inference by an approximate application of the maximum entropy principle
    • Yan, L., & Miller, D. J. (1999a). General statistical inference by an approximate application of the maximum entropy principle. In Proc. of IEEE Workshop on Neural Networks for Sig. Proc. (pp. 112-121).
    • (1999) Proc. of IEEE Workshop on Neural Networks for Sig. Proc. , pp. 112-121
    • Yan, L.1    Miller, D.J.2
  • 38
    • 0000806445 scopus 로고    scopus 로고
    • Minimax entropy principle and its application to texture modeling
    • Zhu, S. C., Wu, Y. N., & Mumford, D. (1997). Minimax entropy principle and its application to texture modeling. Neural Computation, 9(8), 1627-1660.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1627-1660
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.