-
2
-
-
0002652285
-
A maximum entropy approach to natural language processing
-
Berger, A. L., Della Pietra, S. A., & Della Pietra, V. J. (1996). A maximum entropy approach to natural language processing. Computational Linguistics, 22(1), 39-68.
-
(1996)
Computational Linguistics
, vol.22
, Issue.1
, pp. 39-68
-
-
Berger, A.L.1
Della Pietra, S.A.2
Della Pietra, V.J.3
-
5
-
-
0027629328
-
Vector quantization with complexity costs
-
Buhmann, J., & Kuhnel, H. (1994). Vector quantization with complexity costs. IEEE Trans. on Info. Theory, 39, 1133-1145.
-
(1994)
IEEE Trans. on Info. Theory
, vol.39
, pp. 1133-1145
-
-
Buhmann, J.1
Kuhnel, H.2
-
6
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Trans. on Knowl. and Data Eng., 8, 195-210.
-
(1996)
IEEE Trans. on Knowl. and Data Eng.
, vol.8
, pp. 195-210
-
-
Buntine, W.1
-
7
-
-
0004147631
-
-
Unpublished doctoral dissertation, Stanford University, Stanford, CA
-
Burg, J. P. (1975). Maximum entropy spectral analysis. Unpublished doctoral dissertation, Stanford University, Stanford, CA.
-
(1975)
Maximum Entropy Spectral Analysis
-
-
Burg, J.P.1
-
8
-
-
0020879288
-
A method of computing generalized bayesian probability values for expert systems
-
Cheeseman, P. (1983). A method of computing generalized Bayesian probability values for expert systems. In Proc. of the Eighth Intl. Joint Conf. on AI (Vol. 1, pp. 198-202).
-
(1983)
Proc. of the Eighth Intl. Joint Conf. on AI
, vol.1
, pp. 198-202
-
-
Cheeseman, P.1
-
9
-
-
84943175777
-
Autoclass: A bayesian classification system
-
Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). AutoClass: A Bayesian classification system. In Proc. of the Fifth Intl. Conf. on Machine Learning.
-
(1988)
Proc. of the Fifth Intl. Conf. on Machine Learning
-
-
Cheeseman, P.1
Kelly, J.2
Self, M.3
Stutz, J.4
Taylor, W.5
Freeman, D.6
-
10
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory, 14, 462-467.
-
(1968)
IEEE Trans. on Info. Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
11
-
-
34249832377
-
A bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
13
-
-
0000130823
-
A fast procedure for model search in multidimensional contingency tables
-
Edwards, D., & Havranek, T. (1985). A fast procedure for model search in multidimensional contingency tables. Biometrica, 72, 339-351.
-
(1985)
Biometrica
, vol.72
, pp. 339-351
-
-
Edwards, D.1
Havranek, T.2
-
16
-
-
0040973441
-
Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting
-
Friedman, N., Goldszmidt, M., & Lee, T. J. (1998). Bayesian network classification with continuous attributes: getting the best of both discretization and parametric fitting. In Proc. of the Intl. Conf. on Machine Learning (pp. 179-187).
-
(1998)
Proc. of the Intl. Conf. on Machine Learning
, pp. 179-187
-
-
Friedman, N.1
Goldszmidt, M.2
Lee, T.J.3
-
18
-
-
0001551844
-
Supervised learning from incomplete data via an EM approach
-
J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Mateo, CA: Morgan Kauffman
-
Ghahramani, Z., & Jordan, M. I. (1994). Supervised learning from incomplete data via an EM approach. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6 (pp. 120-127). San Mateo, CA: Morgan Kauffman.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 120-127
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
20
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, A., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, A.2
Chickering, D.M.3
-
21
-
-
0012062308
-
Kutato: An entropy-driven system for construction of probabilistic expert systems from databases
-
. P. Bonissone, M. Henrione, L. N. Kanal, & J. F. Lemmer (Eds.), Amsterdam: Elsevier
-
Herskovits, E., & Cooper, G. (1991). Kutato: An entropy-driven system for construction of probabilistic expert systems from databases. In P. P. Bonissone, M. Henrione, L. N. Kanal, & J. F. Lemmer (Eds.), Uncertainty in AI 6(pp. 117-125). Amsterdam: Elsevier.
-
(1991)
Uncertainty in AI 6
, vol.6
, pp. 117-125
-
-
Herskovits, E.1
Cooper, G.2
-
23
-
-
0003641246
-
On the effective implementation of the iterative proportional fitting procedure
-
Jirousek, R., & Preucil, S. (1995). On the effective implementation of the iterative proportional fitting procedure. Comp. Stat. and Data Anal., 19, 177-189.
-
(1995)
Comp. Stat. and Data Anal.
, vol.19
, pp. 177-189
-
-
Jirousek, R.1
Preucil, S.2
-
24
-
-
0031169205
-
Optimal approximation of discrete probability distribution with kth-order dependency and its application to com-bining multiple classifiers
-
Kang, H., Kim, K., & Kim, J. H. (1997). Optimal approximation of discrete probability distribution with kth-order dependency and its application to com-bining multiple classifiers. Patt. Rec. Letters, 18, 515-523.
-
(1997)
Patt. Rec. Letters
, vol.18
, pp. 515-523
-
-
Kang, H.1
Kim, K.2
Kim, J.H.3
-
25
-
-
0001566920
-
Approximating discrete probability distributions
-
Ku, H. H., & Kullback, S. (1969). Approximating discrete probability distributions. IEEE Trans. on Info. Theory, 15(4), 444-447.
-
(1969)
IEEE Trans. on Info. Theory
, vol.15
, Issue.4
, pp. 444-447
-
-
Ku, H.H.1
Kullback, S.2
-
26
-
-
21144483152
-
Pattern-mixture models for multivariate incomplete data
-
Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the Amer. Stat. Assoc., 88, 125-134.
-
(1993)
Journal of the Amer. Stat. Assoc.
, vol.88
, pp. 125-134
-
-
Little, R.J.A.1
-
27
-
-
84898959728
-
Estimating dependency structure as a hidden variable
-
M. Kearns, M. Jordan, & S. Solla (Eds.), Cambridge, MA: MIT Press
-
Meila, M., & Jordan, M. I. (1998). Estimating dependency structure as a hidden variable. In M. Kearns, M. Jordan, & S. Solla (Eds.), Advances in neural information processing systems, 10 (pp. 584-590). Cambridge, MA: MIT Press.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 584-590
-
-
Meila, M.1
Jordan, M.I.2
-
28
-
-
0030412880
-
A global optimization technique for statistical classifier design
-
Miller, D. J., Rao, A. V., Rose, K., & Gersho, A. (1996). A global optimization technique for statistical classifier design. IEEE Trans. on Sig. Proc., 44, 3108-3122.
-
(1996)
IEEE Trans. on Sig. Proc.
, vol.44
, pp. 3108-3122
-
-
Miller, D.J.1
Rao, A.V.2
Rose, K.3
Gersho, A.4
-
29
-
-
0033327709
-
Critic-driven ensemble classification
-
Miller, D. J. & Yan, L. (1999). Critic-driven ensemble classification. IEEE Trans. on Sig. Proc., 47, 2833-2844.
-
(1999)
IEEE Trans. on Sig. Proc.
, vol.47
, pp. 2833-2844
-
-
Miller, D.J.1
Yan, L.2
-
30
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. M. (1992). Connectionist learning of belief networks. Art. Intell., 56, 71-113.
-
(1992)
Art. Intell.
, vol.56
, pp. 71-113
-
-
Neal, R.M.1
-
34
-
-
84899025015
-
Vector quantization by deterministic annealing
-
Rose, K., Gurewitz, E., & Fox, G. C. (1992). Vector quantization by deterministic annealing. IEEE Trans. on Info. Theory, 38, 1249-1257.
-
(1992)
IEEE Trans. on Info. Theory
, vol.38
, pp. 1249-1257
-
-
Rose, K.1
Gurewitz, E.2
Fox, G.C.3
-
35
-
-
0018877134
-
Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
-
Shore, J. E., & Johnson, R. W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. on Info. Theory, 26, 26-37.
-
(1980)
IEEE Trans. on Info. Theory
, vol.26
, pp. 26-37
-
-
Shore, J.E.1
Johnson, R.W.2
-
36
-
-
0033337022
-
General statistical inference by an approximate application of the maximum entropy principle
-
Yan, L., & Miller, D. J. (1999a). General statistical inference by an approximate application of the maximum entropy principle. In Proc. of IEEE Workshop on Neural Networks for Sig. Proc. (pp. 112-121).
-
(1999)
Proc. of IEEE Workshop on Neural Networks for Sig. Proc.
, pp. 112-121
-
-
Yan, L.1
Miller, D.J.2
-
38
-
-
0000806445
-
Minimax entropy principle and its application to texture modeling
-
Zhu, S. C., Wu, Y. N., & Mumford, D. (1997). Minimax entropy principle and its application to texture modeling. Neural Computation, 9(8), 1627-1660.
-
(1997)
Neural Computation
, vol.9
, Issue.8
, pp. 1627-1660
-
-
Zhu, S.C.1
Wu, Y.N.2
Mumford, D.3
|