메뉴 건너뛰기




Volumn 37, Issue 5, 2007, Pages 1305-1320

Pipelined recurrent fuzzy neural networks for nonlinear adaptive speech prediction

Author keywords

Dynamic fuzzy inference; Extended Kalman filtering; Modular network; Ordered derivatives; Pipelined predictor; Recurrent fuzzy neural network (RFNN)

Indexed keywords

EXTENDED KALMAN FILTERS; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; RECURRENT NEURAL NETWORKS;

EID: 35148816468     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2007.900516     Document Type: Article
Times cited : (33)

References (32)
  • 1
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, no. 2, pp. 270-280, 1989.
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 2
    • 0032584970 scopus 로고    scopus 로고
    • Time-delay recurrent neural network for temporal correlations and prediction
    • Aug
    • S.-S. Kim, "Time-delay recurrent neural network for temporal correlations and prediction," Neurocomputing, vol. 20, no. 1-3, pp. 253-263, Aug. 1998.
    • (1998) Neurocomputing , vol.20 , Issue.1-3 , pp. 253-263
    • Kim, S.-S.1
  • 3
    • 0028392406 scopus 로고
    • Locally recurrent globally feedforward networks: A critical review of architectures
    • Mar
    • A. C. Tsoi and A. D. Back, "Locally recurrent globally feedforward networks: A critical review of architectures," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 229-239, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 229-239
    • Tsoi, A.C.1    Back, A.D.2
  • 4
    • 0000029787 scopus 로고
    • FIR and IIR synapses, a new neural network architecture for time series modeling
    • A. D. Back and A. C. Tsoi, "FIR and IIR synapses, a new neural network architecture for time series modeling," Neural Comput., vol. 3, no. 3, pp. 375-385, 1991.
    • (1991) Neural Comput , vol.3 , Issue.3 , pp. 375-385
    • Back, A.D.1    Tsoi, A.C.2
  • 5
    • 0028399792 scopus 로고
    • Memory neuron networks for identification and control of dynamical systems
    • Mar
    • P. S. Sastry, G. Santharam, and K. P. Unnikrishann, "Memory neuron networks for identification and control of dynamical systems," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 306-319, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 306-319
    • Sastry, P.S.1    Santharam, G.2    Unnikrishann, K.P.3
  • 6
    • 0029207879 scopus 로고
    • Diagonal recurrent neural networks for dynamic systems control
    • Jan
    • C.-C. Ku and K. Y. Lee, "Diagonal recurrent neural networks for dynamic systems control," IEEE Trans. Neural Netw., vol. 6, no. 1, pp. 144-156, Jan. 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.1 , pp. 144-156
    • Ku, C.-C.1    Lee, K.Y.2
  • 7
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • Mar
    • J. T. Connor, R. D. Martin, and L. E. Atlas, "Recurrent neural networks and robust time series prediction," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 240-254, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 240-254
    • Connor, J.T.1    Martin, R.D.2    Atlas, L.E.3
  • 8
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependences in NARX recurrent neural networks
    • Nov
    • T. Lin, B. G. Horne, P. Tino, and C. L. Giles, "Learning long-term dependences in NARX recurrent neural networks," IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1329-1338, Nov. 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Horne, B.G.2    Tino, P.3    Giles, C.L.4
  • 9
    • 0029252331 scopus 로고
    • Nonlinear adaptive prediction of nonstationary signals
    • Feb
    • S. Haykin and L. Li, "Nonlinear adaptive prediction of nonstationary signals," IEEE Trans. Signal Process., vol. 43, no. 2, pp. 526-535, Feb. 1995.
    • (1995) IEEE Trans. Signal Process , vol.43 , Issue.2 , pp. 526-535
    • Haykin, S.1    Li, L.2
  • 10
    • 0031197661 scopus 로고    scopus 로고
    • Optimal nonlinear adaptive prediction and modeling of MPEG video in ATM networks using pipelined recurrent neural networks
    • Aug
    • P.-R. Chang and J.-T. Hu, "Optimal nonlinear adaptive prediction and modeling of MPEG video in ATM networks using pipelined recurrent neural networks," IEEE J. Sel. Areas Commun., vol. 15, no. 6, pp. 1087-1100, Aug. 1997.
    • (1997) IEEE J. Sel. Areas Commun , vol.15 , Issue.6 , pp. 1087-1100
    • Chang, P.-R.1    Hu, J.-T.2
  • 11
    • 0032140757 scopus 로고    scopus 로고
    • Nonlinear adaptive prediction of speech with a pipelined recurrent neural network
    • Aug
    • J. Beltersee and J. A. Chambers, "Nonlinear adaptive prediction of speech with a pipelined recurrent neural network," IEEE Trans. Signal Process., vol. 46, no. 8, pp. 2207-2216, Aug. 1998.
    • (1998) IEEE Trans. Signal Process , vol.46 , Issue.8 , pp. 2207-2216
    • Beltersee, J.1    Chambers, J.A.2
  • 12
    • 0033309094 scopus 로고    scopus 로고
    • Toward an optimal PRNN-based nonlinear prediction
    • Nov
    • D. P. Mandic and J. A. Chambers, "Toward an optimal PRNN-based nonlinear prediction," IEEE Trans. Neural Netw., vol. 10, no. 6, pp. 1435-1442, Nov. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.6 , pp. 1435-1442
    • Mandic, D.P.1    Chambers, J.A.2
  • 13
    • 0033751613 scopus 로고    scopus 로고
    • On the choice of parameters of the cost function in nested modular RNN's
    • Mar
    • D. P. Mandic and J. A. Chambers, "On the choice of parameters of the cost function in nested modular RNN's," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 315-322, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.2 , pp. 315-322
    • Mandic, D.P.1    Chambers, J.A.2
  • 14
    • 0033098832 scopus 로고    scopus 로고
    • Recurrent neuro-fuzzy networks for nonlinear process modeling
    • Mar
    • J. Zhang and A. J. Morris, "Recurrent neuro-fuzzy networks for nonlinear process modeling," IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 313-326, Mar. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.2 , pp. 313-326
    • Zhang, J.1    Morris, A.J.2
  • 15
    • 0030389065 scopus 로고    scopus 로고
    • Recursive learning algorithms for training fuzzy recurrent models
    • J. B. Theocharis and G. V. Vachtsevanos, "Recursive learning algorithms for training fuzzy recurrent models," Int. J. Intell. Syst., vol. 11, no. 12, pp. 1059-1098, 1996.
    • (1996) Int. J. Intell. Syst , vol.11 , Issue.12 , pp. 1059-1098
    • Theocharis, J.B.1    Vachtsevanos, G.V.2
  • 16
    • 0034244894 scopus 로고    scopus 로고
    • Identification and control of dynamic systems using recurrent fuzzy neural networks
    • Aug
    • C.-H. Lee and C.-C. Teng, "Identification and control of dynamic systems using recurrent fuzzy neural networks," IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 349-366, Aug. 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.4 , pp. 349-366
    • Lee, C.-H.1    Teng, C.-C.2
  • 17
    • 11244339733 scopus 로고    scopus 로고
    • Identification and prediction using recurrent compensatory neuro-fuzzy systems
    • C.-J. Lin and C.-H. Chen, "Identification and prediction using recurrent compensatory neuro-fuzzy systems," Fuzzy Sets Syst., vol. 150, no. 2, pp. 307-330, 2005.
    • (2005) Fuzzy Sets Syst , vol.150 , Issue.2 , pp. 307-330
    • Lin, C.-J.1    Chen, C.-H.2
  • 18
    • 4844222566 scopus 로고    scopus 로고
    • Prediction and identification using wavelet-based recurrent fuzzy neural network
    • Oct
    • C. J. Lin and C. C. Chin, "Prediction and identification using wavelet-based recurrent fuzzy neural network," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 5, pp. 2144-2154, Oct. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.5 , pp. 2144-2154
    • Lin, C.J.1    Chin, C.C.2
  • 19
    • 0035358455 scopus 로고    scopus 로고
    • Learning feed-forward and recurrent fuzzy systems: A genetic approach
    • H. Surmann and M. Maniadakis, "Learning feed-forward and recurrent fuzzy systems: A genetic approach," Int. J. Syst. Archit., vol. 47, no. 7, pp. 649-662, 2001.
    • (2001) Int. J. Syst. Archit , vol.47 , Issue.7 , pp. 649-662
    • Surmann, H.1    Maniadakis, M.2
  • 20
    • 0036532267 scopus 로고    scopus 로고
    • A recurrent fuzzy-neural model for dynamic system identification
    • Apr
    • P. A. Mastorocostas and J. B. Theocharis, "A recurrent fuzzy-neural model for dynamic system identification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 2, pp. 176-190, Apr. 2002.
    • (2002) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.32 , Issue.2 , pp. 176-190
    • Mastorocostas, P.A.1    Theocharis, J.B.2
  • 21
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches
    • Y. Gao and M. J. Er, "NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches," Fuzzy Sets Syst., vol. 150, no. 2, pp. 331-350, 2005.
    • (2005) Fuzzy Sets Syst , vol.150 , Issue.2 , pp. 331-350
    • Gao, Y.1    Er, M.J.2
  • 22
    • 0032681147 scopus 로고    scopus 로고
    • A recurrent self-organizing neural fuzzy inference network
    • Jul
    • C.-F. Juang and C.-T. Lin, "A recurrent self-organizing neural fuzzy inference network," IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 828-845, Jul. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.4 , pp. 828-845
    • Juang, C.-F.1    Lin, C.-T.2
  • 23
    • 0036531230 scopus 로고    scopus 로고
    • A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms
    • Apr
    • C.-F. Juang, "A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 155-170, Apr. 2002.
    • (2002) IEEE Trans. Fuzzy Syst , vol.10 , Issue.2 , pp. 155-170
    • Juang, C.-F.1
  • 24
    • 0742285809 scopus 로고    scopus 로고
    • Temporal problems solved by dynamic fuzzy network based on genetic algorithm with variable-length chromosomes
    • Mar
    • C.-F. Juang, "Temporal problems solved by dynamic fuzzy network based on genetic algorithm with variable-length chromosomes," Fuzzy Sets Syst., vol. 142, no. 2, pp. 199-219, Mar. 2004.
    • (2004) Fuzzy Sets Syst , vol.142 , Issue.2 , pp. 199-219
    • Juang, C.-F.1
  • 25
    • 0035245167 scopus 로고    scopus 로고
    • Noisy signal processing by recurrently adaptive fuzzy filters
    • Feb
    • C.-F. Juang and C.-T. Lin, "Noisy signal processing by recurrently adaptive fuzzy filters," IEEE Trans. Fuzzy Syst., vol. 9, no. 1, pp. 139-152, Feb. 2001.
    • (2001) IEEE Trans. Fuzzy Syst , vol.9 , Issue.1 , pp. 139-152
    • Juang, C.-F.1    Lin, C.-T.2
  • 26
    • 33744792340 scopus 로고    scopus 로고
    • Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation
    • Jun
    • C.-F. Juang and J. S. Chen, "Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation," IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 941-949, Jun. 2006.
    • (2006) IEEE Trans. Ind. Electron , vol.53 , Issue.3 , pp. 941-949
    • Juang, C.-F.1    Chen, J.S.2
  • 27
    • 28044450377 scopus 로고    scopus 로고
    • A high-order recurrent neuro-fuzzy system with internal dynamics: Application to adaptive noise cancellation
    • J. B. Theocharis, "A high-order recurrent neuro-fuzzy system with internal dynamics: Application to adaptive noise cancellation," Fuzzy Sets Syst., vol. 157, no. 4, pp. 471-500, 2006.
    • (2006) Fuzzy Sets Syst , vol.157 , Issue.4 , pp. 471-500
    • Theocharis, J.B.1
  • 28
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for online training of recurrent network trajectories
    • R. J. Williams and J. Peng, "An efficient gradient-based algorithm for online training of recurrent network trajectories," Neural Comput. vol. 2, no. 4, pp. 490-501, 1990.
    • (1990) Neural Comput , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 29
    • 0026923239 scopus 로고
    • Optimal filtering algorithms for fast learning in feedforward neural networks
    • Sep./Oct
    • S. Shah, F. Palmieri, and M. Datum, "Optimal filtering algorithms for fast learning in feedforward neural networks," Neural Netw., vol. 5, no. 5, pp. 779-787, Sep./Oct. 1992.
    • (1992) Neural Netw , vol.5 , Issue.5 , pp. 779-787
    • Shah, S.1    Palmieri, F.2    Datum, M.3
  • 31
    • 0028401356 scopus 로고
    • Steepest descent algorithms for neural network controllers and filters
    • Mar
    • S. W. Piche, "Steepest descent algorithms for neural network controllers and filters," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 198-212, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 198-212
    • Piche, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.