메뉴 건너뛰기




Volumn 11, Issue 12, 1996, Pages 1059-1098

Recursive learning algorithms for training fuzzy recurrent models

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE SYSTEMS; COMPUTATIONAL METHODS; DIGITAL FILTERS; FEEDBACK; FUZZY SETS; INFERENCE ENGINES; LEARNING ALGORITHMS; MATHEMATICAL MODELS; PERFORMANCE; POLYNOMIALS; RECURSIVE FUNCTIONS;

EID: 0030389065     PISSN: 08848173     EISSN: None     Source Type: Journal    
DOI: 10.1002/(sici)1098-111x(199612)11:12<1059::aid-int3>3.0.co;2-m     Document Type: Article
Times cited : (23)

References (26)
  • 1
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K.S. Naredra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. on Neural Networks, 1, 4-27 (1990).
    • (1990) IEEE Trans. on Neural Networks , vol.1 , pp. 4-27
    • Naredra, K.S.1    Parthasarathy, K.2
  • 2
    • 0025418210 scopus 로고
    • Neural networks for self-learning control systems
    • April
    • Nguyen and B. Widrow, "Neural networks for self-learning control systems," IEEE Control Syst. Mag., April 1990.
    • (1990) IEEE Control Syst. Mag.
    • Nguyen1    Widrow, B.2
  • 3
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K.M. Hornik, Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, 2, 359-366 (1989).
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.M.1    Stinchcombe2    White, H.3
  • 5
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R.J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Computation, 270-277 (1989).
    • (1989) Neural Computation , pp. 270-277
    • Williams, R.J.1    Zipser, D.2
  • 6
    • 0026626377 scopus 로고
    • Comparison of four neural net learning methods for dynamic system identification
    • S.Z. Quin, H.T. Su, and T.J. McAvoy, "Comparison of four neural net learning methods for dynamic system identification," IEEE Trans. Neural Networks, 3(1), 122-130 (1992).
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 122-130
    • Quin, S.Z.1    Su, H.T.2    McAvoy, T.J.3
  • 7
    • 0028392484 scopus 로고
    • Back-propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models
    • March
    • B. Srinivasan, U.R. Prasad, and N.J. Rao, "Back-propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models," IEEE Trans. Neural Nets, 5(2), 213-228 (March 1994).
    • (1994) IEEE Trans. Neural Nets , vol.5 , Issue.2 , pp. 213-228
    • Srinivasan, B.1    Prasad, U.R.2    Rao, N.J.3
  • 9
    • 0026117466 scopus 로고
    • Gradient methods for the optimization of dynamic systems containing neural networks
    • K.S. Naredra and K. Parthasarathy, "Gradient methods for the optimization of dynamic systems containing neural networks," IEEE Trans. Neural Networks, 252-262, (1991).
    • (1991) IEEE Trans. Neural Networks , pp. 252-262
    • Naredra, K.S.1    Parthasarathy, K.2
  • 10
    • 0000903748 scopus 로고
    • Generalization of back-propagation with application to recurrent gas market model
    • P. Werbos, "Generalization of back-propagation with application to recurrent gas market model," Neural Networks, 339-356 (1988).
    • (1988) Neural Networks , pp. 339-356
    • Werbos, P.1
  • 11
    • 0028401356 scopus 로고
    • Steepest descent algorithms for neural network controllers and filters
    • March
    • S.W. Piche, "Steepest descent algorithms for neural network controllers and filters," IEEE Trans. Neural Networks, 5(2). 198-212 (March 1984).
    • (1984) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 198-212
    • Piche, S.W.1
  • 12
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • M. Sugeno and G.T. Kang, "Structure identification of fuzzy model," Fuzzy Sets Syst. 28, 15-33 (1988).
    • (1988) Fuzzy Sets Syst. , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 14
    • 0026984801 scopus 로고
    • Back-propagation fuzzy system as nonlinear dynamic system identifiers
    • L.X. Wang and J.M. Mendel, "Back-propagation fuzzy system as nonlinear dynamic system identifiers," Proc. IEEE Conf. on Fuzzy Systems, 1992, pp. 1409-1418.
    • (1992) Proc. IEEE Conf. on Fuzzy Systems , pp. 1409-1418
    • Wang, L.X.1    Mendel, J.M.2
  • 15
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • L.X. Wang and J.M. Mendel, "Generating fuzzy rules by learning from examples," IEEE Trans. Syst. Man Cybern., 22(6), 1414-1427 (1992).
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 16
    • 0026925677 scopus 로고
    • Self learning fuzzy controllers based on temporal back propagation
    • J.S. Jang, "Self learning fuzzy controllers based on temporal back propagation," IEEE Trans. on Neural Networks, 3(5), 714-723 (1992).
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.S.1
  • 17
    • 0028369322 scopus 로고
    • Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
    • Feb.
    • C.T. Lin and C.S.G. Lee, "Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems," IEEE Trans. on Fuzzy Systems, 2(1), 46-63 (Feb. 1994).
    • (1994) IEEE Trans. on Fuzzy Systems , vol.2 , Issue.1 , pp. 46-63
    • Lin, C.T.1    Lee, C.S.G.2
  • 19
    • 0028750995 scopus 로고
    • Recurrent fuzzy systems
    • Orlando, June 26-29
    • H. Bersini and V. Giorrini, "Recurrent fuzzy systems," In Proc. FUZZ-IEEE'94, 1, pp. 193-198. Orlando, June 26-29, 1994.
    • (1994) Proc. FUZZ-IEEE'94 , vol.1 , pp. 193-198
    • Bersini, H.1    Giorrini, V.2
  • 20
    • 0027544110 scopus 로고
    • A fuzzy logic based approach to qualitative modeling
    • Feb.
    • M. Sugeno and T. Yasukawa, "A fuzzy logic based approach to qualitative modeling," IEEE Trans. Fuzzy Syst., 1(1), 7-31 (Feb. 1993).
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 21
    • 0029358133 scopus 로고
    • Modeling and control of carbon monoxide concentration using a neuro-uzzy technique
    • Aug.
    • K. Tanaka, M. Sano, and H. Watanabe, "Modeling and control of carbon monoxide concentration using a neuro-uzzy technique," IEEE Trans. Fuzzy Syst. 3(3), 271-279 (Aug. 1995).
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.3 , pp. 271-279
    • Tanaka, K.1    Sano, M.2    Watanabe, H.3
  • 22
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Y. Lin and G. Cunningham, "A new approach to fuzzy-neural system modeling," IEEE Trans. Fuzzy Syst., 3(2), 190-198 (1995).
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-198
    • Lin, Y.1    Cunningham, G.2
  • 23
    • 0026381266 scopus 로고
    • Fuzzy modeling based on generalized neural networks and fuzzy clustering objective functions
    • Brighton
    • C. Sun and J. Jang, "Fuzzy modeling based on generalized neural networks and fuzzy clustering objective functions," Proc. on the 30th Conf. on Decision and Control, Brighton, 1991, pp. 2924-2929.
    • (1991) Proc. on the 30th Conf. on Decision and Control , pp. 2924-2929
    • Sun, C.1    Jang, J.2
  • 24
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R.J. Williams and J. Peng, "An efficient gradient-based algorithm for on-line training of recurrent network trajectories," Neural Computation, 490-501 (1990).
    • (1990) Neural Computation , pp. 490-501
    • Williams, R.J.1    Peng, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.