-
4
-
-
0004035997
-
-
American Psychiatric Publishing, Washington, DC, ed. 1
-
M. S. George, R. H. Belmaker, Transcranial Magnetic Stimulation in Clinical Psychiatry (American Psychiatric Publishing, Washington, DC, ed. 1, 2007).
-
(2007)
Transcranial Magnetic Stimulation in Clinical Psychiatry
-
-
George, M.S.1
Belmaker, R.H.2
-
7
-
-
0036331406
-
-
Y. Zheng et al., Neuroimage 16, 617 (2002).
-
(2002)
Neuroimage
, vol.16
, pp. 617
-
-
Zheng, Y.1
-
8
-
-
12144271355
-
-
M. Suh, S. Bahar, A. D. Mehta, T. H. Schwartz, J. Neurosci. 25, 68 (2005).
-
(2005)
J. Neurosci
, vol.25
, pp. 68
-
-
Suh, M.1
Bahar, S.2
Mehta, A.D.3
Schwartz, T.H.4
-
11
-
-
34848842354
-
-
The partial pressure of oxygen within extravascular tissue is sensitive to changes in both cerebral blood flow and the rate of oxidative metabolism 10
-
The partial pressure of oxygen within extravascular tissue is sensitive to changes in both cerebral blood flow and the rate of oxidative metabolism (10).
-
-
-
-
12
-
-
34848826455
-
-
See supporting material on Science Online.
-
See supporting material on Science Online.
-
-
-
-
13
-
-
34848831353
-
-
Hbt is quantitatively related to cerebral blood flow (14) and therefore provides an independent measurement of this variable.
-
Hbt is quantitatively related to cerebral blood flow (14) and therefore provides an independent measurement of this variable.
-
-
-
-
14
-
-
0016140572
-
-
R. L. Grubb Jr., M. E. Raichle, J. O. Eichling, M. M. Ter-Pogossian, Stroke 5, 630 (1974).
-
(1974)
Stroke
, vol.5
, pp. 630
-
-
Grubb Jr., R.L.1
Raichle, M.E.2
Eichling, J.O.3
Ter-Pogossian, M.M.4
-
15
-
-
34848927067
-
-
During suppressive phases, we use evoked rather than spontaneous spiking to index neural activity because baseline spontaneous activity (∼1 spike/s) is typically too low to detect signal decreases
-
During suppressive phases, we use evoked rather than spontaneous spiking to index neural activity because baseline spontaneous activity (∼1 spike/s) is typically too low to detect signal decreases.
-
-
-
-
17
-
-
34848818997
-
-
One might expect to observe visually elicited oxygen responses during the evoked intervals of the TMS trial (fig. S2B, However, stimulus-evoked responses are considerably smaller and more variable than TMS-induced oxygen responses, and are therefore negligible in the current paradigm fig. S6
-
One might expect to observe visually elicited oxygen responses during the evoked intervals of the TMS trial (fig. S2B). However, stimulus-evoked responses are considerably smaller and more variable than TMS-induced oxygen responses, and are therefore negligible in the current paradigm (fig. S6).
-
-
-
-
18
-
-
33645379091
-
-
A. Shmuel, M. Augath, A. Oeltermann, N. K. Logothetis, Nat. Neurosci. 9, 569 (2006).
-
(2006)
Nat. Neurosci
, vol.9
, pp. 569
-
-
Shmuel, A.1
Augath, M.2
Oeltermann, A.3
Logothetis, N.K.4
-
20
-
-
23244435013
-
-
J. Niessing et al., Science 309, 948 (2005).
-
(2005)
Science
, vol.309
, pp. 948
-
-
Niessing, J.1
-
21
-
-
34848823949
-
-
On the basis of previous work in awake animals (22) and the similarity of neurovascular organization (23, 24) across the cortex, we expect that preserved coupling after TMS will generalize to a broad range of cortical regions and physiological states.
-
On the basis of previous work in awake animals (22) and the similarity of neurovascular organization (23, 24) across the cortex, we expect that preserved coupling after TMS will generalize to a broad range of cortical regions and physiological states.
-
-
-
-
25
-
-
0027989493
-
-
A. Pascual-Leone, J. Valls-Sole, E. M. Wassermann, M. Hallett, Brain 117, 847 (1994).
-
(1994)
Brain
, vol.117
, pp. 847
-
-
Pascual-Leone, A.1
Valls-Sole, J.2
Wassermann, E.M.3
Hallett, M.4
-
27
-
-
12344287391
-
-
Y. Z. Huang, M. J. Edwards, E. Rounis, K. P. Bhatia, J. C. Rothwell, Neuron 45, 201 (2005).
-
(2005)
Neuron
, vol.45
, pp. 201
-
-
Huang, Y.Z.1
Edwards, M.J.2
Rounis, E.3
Bhatia, K.P.4
Rothwell, J.C.5
-
28
-
-
0034193409
-
-
F. Maeda, J. P. Keenan, J. M. Tormos, H. Topka, A. Pascual-Leone, Clin. Neurophysiol. 111, 800 (2000).
-
(2000)
Clin. Neurophysiol
, vol.111
, pp. 800
-
-
Maeda, F.1
Keenan, J.P.2
Tormos, J.M.3
Topka, H.4
Pascual-Leone, A.5
-
33
-
-
34147181001
-
-
J. Jacobs, M. J. Kahana, A. D. Ekstrom, I. Fried, J. Neurosci. 27, 3839 (2007).
-
(2007)
J. Neurosci
, vol.27
, pp. 3839
-
-
Jacobs, J.1
Kahana, M.J.2
Ekstrom, A.D.3
Fried, I.4
-
37
-
-
34447634262
-
-
M. L. Kringelbach, N. Jenkinson, S. L. Owen, T. Z. Aziz, Nat. Rev. Neurosci. 8, 623 (2007).
-
(2007)
Nat. Rev. Neurosci
, vol.8
, pp. 623
-
-
Kringelbach, M.L.1
Jenkinson, N.2
Owen, S.L.3
Aziz, T.Z.4
-
39
-
-
34848838791
-
-
A. T. Sack et al., Cereb. Cortex (2007).
-
A. T. Sack et al., Cereb. Cortex (2007).
-
-
-
-
40
-
-
33746541689
-
-
C. C. Ruff et al., Curr. Biol. 16, 1479 (2006).
-
(2006)
Curr. Biol
, vol.16
, pp. 1479
-
-
Ruff, C.C.1
-
41
-
-
34848835649
-
-
We thank our colleagues at the University of California, Berkeley, and anonymous reviewers for their helpful comments, and R. Bartholomew, N. Lines, and L. Gibson for assistance in developing the electrophysiological apparatus. Supported by research and CORE grants from the National Eye Institute (EY01175 and EY03176, respectively) and by NSF graduate research fellowship 2003014861
-
We thank our colleagues at the University of California, Berkeley, and anonymous reviewers for their helpful comments, and R. Bartholomew, N. Lines, and L. Gibson for assistance in developing the electrophysiological apparatus. Supported by research and CORE grants from the National Eye Institute (EY01175 and EY03176, respectively) and by NSF graduate research fellowship 2003014861.
-
-
-
|