-
1
-
-
37649026044
-
-
For reviews of ligand-metal bifunctional catalysis, see: a
-
For reviews of ligand-metal bifunctional catalysis, see: (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40-73.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 40-73
-
-
Noyori, R.1
Ohkuma, T.2
-
2
-
-
1842732187
-
-
(b) Noyori, R.; Kitamura, M.; Ohkuma, T. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5356-5362.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A
, vol.101
, pp. 5356-5362
-
-
Noyori, R.1
Kitamura, M.2
Ohkuma, T.3
-
3
-
-
9644257463
-
-
(c) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201-2237.
-
(2004)
Coord. Chem. Rev
, vol.248
, pp. 2201-2237
-
-
Clapham, S.E.1
Hadzovic, A.2
Morris, R.H.3
-
4
-
-
33645681534
-
-
(d) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393-406.
-
(2006)
Org. Biomol. Chem
, vol.4
, pp. 393-406
-
-
Ikariya, T.1
Murata, K.2
Noyori, R.3
-
5
-
-
33845375188
-
-
Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem. Soc. 1986, 108, 7400-7402.
-
(1986)
J. Am. Chem. Soc
, vol.108
, pp. 7400-7402
-
-
Shvo, Y.1
Czarkie, D.2
Rahamim, Y.3
Chodosh, D.F.4
-
7
-
-
0030591543
-
-
Menashe, N.; Salant, E.; Shvo, Y. J. Organomet. Chem. 1996, 514, 97-102.
-
(1996)
J. Organomet. Chem
, vol.514
, pp. 97-102
-
-
Menashe, N.1
Salant, E.2
Shvo, Y.3
-
8
-
-
0033001550
-
-
Persson, B. A.; Huerta, F. F.; Bäckvall, J.-E. J. Org. Chem. 1999, 64, 5237-5240.
-
(1999)
J. Org. Chem
, vol.64
, pp. 5237-5240
-
-
Persson, B.A.1
Huerta, F.F.2
Bäckvall, J.-E.3
-
9
-
-
21044443212
-
-
Martin-Matute, B.; Edin, M.; Bogár, K.; Kavnak, F. B.; Bäckvall, J.-E. J. Am. Chem. Soc. 2005, 127, 8817-8825.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 8817-8825
-
-
Martin-Matute, B.1
Edin, M.2
Bogár, K.3
Kavnak, F.B.4
Bäckvall, J.-E.5
-
10
-
-
33747429731
-
-
Fransson, A.-B. L.; Xu, Y.; Leijondahl, K.; Bäckvall, J.-E. J. Org. Chem. 2006, 71, 6309-6316.
-
(2006)
J. Org. Chem
, vol.71
, pp. 6309-6316
-
-
Fransson, A.-B.L.1
Xu, Y.2
Leijondahl, K.3
Bäckvall, J.-E.4
-
11
-
-
0033999757
-
-
For mechanistic and computational work on other ligand-metal bifunctional hydrogenation catalyst systems, see: (a) Yamakawa, M, Ito, H, Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466-1478
-
For mechanistic and computational work on other ligand-metal bifunctional hydrogenation catalyst systems, see: (a) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466-1478.
-
-
-
-
12
-
-
0037132617
-
-
(b) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104-15118.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 15104-15118
-
-
Abdur-Rashid, K.1
Clapham, S.E.2
Hadzovic, A.3
Harvey, J.N.4
Lough, A.J.5
Morris, R.H.6
-
13
-
-
0242270864
-
-
(c) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490-13503.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 13490-13503
-
-
Sandoval, C.A.1
Ohkuma, T.2
Muñiz, K.3
Noyori, R.4
-
17
-
-
33750702516
-
-
Samec, J. S. M.; Éll, A. H.; Åberg, J. B.; Privalov, T.; Eriksson, L.; Bäckvall, J.-E. J. Am. Chem. Soc. 2006, 128, 14293-14305.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 14293-14305
-
-
Samec, J.S.M.1
Éll, A.H.2
Åberg, J.B.3
Privalov, T.4
Eriksson, L.5
Bäckvall, J.-E.6
-
18
-
-
0035857467
-
-
Casey, C. P.; Singer, S. W.; Powell, D. R.; Hayashi, R. K.; Kavana, M. J. Am. Chem. Soc. 2001, 123, 1090-1100.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 1090-1100
-
-
Casey, C.P.1
Singer, S.W.2
Powell, D.R.3
Hayashi, R.K.4
Kavana, M.5
-
19
-
-
26444594290
-
-
Casey, C. P.; Bikzhanova, G. A.; Cui, Q.; Guzei, I. A. J. Am. Chem. Soc. 2005, 127, 14062-14071.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 14062-14071
-
-
Casey, C.P.1
Bikzhanova, G.A.2
Cui, Q.3
Guzei, I.A.4
-
20
-
-
84961986772
-
-
Casey, C. P.; Johnson, J. B.; Singer, S. W.; Cui, Q. J. Am. Chem. Soc. 2005, 127, 3100-3109.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 3100-3109
-
-
Casey, C.P.1
Johnson, J.B.2
Singer, S.W.3
Cui, Q.4
-
22
-
-
33644552723
-
-
Casey, C. P.; Bikzhanova, G. A.; Guzei, I. A. J. Am. Chem. Soc. 2006, 128, 2286-2293.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 2286-2293
-
-
Casey, C.P.1
Bikzhanova, G.A.2
Guzei, I.A.3
-
23
-
-
0037040679
-
-
Csjernyik, G.; Éll, A. H.; Fadini, L.; Pugin, B.; Bäckvall, J.-E. J. Org. Chem. 2002, 67, 1657-1662.
-
(2002)
J. Org. Chem
, vol.67
, pp. 1657-1662
-
-
Csjernyik, G.1
Éll, A.H.2
Fadini, L.3
Pugin, B.4
Bäckvall, J.-E.5
-
24
-
-
34249938172
-
-
Privalov, T.; Samec, J. S. M.; Bäckvall, J.-E. Organometallics 2007, 26, 2840-2848.
-
(2007)
Organometallics
, vol.26
, pp. 2840-2848
-
-
Privalov, T.1
Samec, J.S.M.2
Bäckvall, J.-E.3
-
25
-
-
0012462507
-
-
Casey, C. P.; Bikzhanova, G. A.; Bäckvall, J.-E.; Johansson, L.; Park, J.; Kim, Y. H. Organometallics 2002, 21, 1955-1959.
-
(2002)
Organometallics
, vol.21
, pp. 1955-1959
-
-
Casey, C.P.1
Bikzhanova, G.A.2
Bäckvall, J.-E.3
Johansson, L.4
Park, J.5
Kim, Y.H.6
-
26
-
-
0037416261
-
-
Casey, C. P.; Vos, T. E.; Bikzhanova, G. A. Organometallics 2003, 22, 901-903.
-
(2003)
Organometallics
, vol.22
, pp. 901-903
-
-
Casey, C.P.1
Vos, T.E.2
Bikzhanova, G.A.3
-
27
-
-
34748912387
-
-
Ph.D. Thesis, University of Wisconsin-Madison
-
Bikzhanova, G. A. Ph.D. Thesis, University of Wisconsin-Madison, 2005.
-
(2005)
-
-
Bikzhanova, G.A.1
-
28
-
-
34748835244
-
-
Additional control experiments were consistent with cleavage of the amine hydrogen bond producing intermediate E and the diamine within the solvent cage. For example, the addition of an external amine (4-isopropylaniline) in the reduction of imine 6 only results in intramolecular and no intermolecular trapping products. Upon warming the 50:50 mixture of 7 and 8 to 24°C, in the presence of the external amine, p-(i-Pr)C6H4NH2, a 6:94 ratio of 7:8 was formed without the generation of the corresponding [p-(i-Pr)C6H4NH2]-Ru complex. This result is consistent with a solvent cage effect.12
-
12
-
-
-
-
29
-
-
34748868430
-
-
2 to ruthenium. This suggests that ruthenium migration via the aromatic system might be possible.
-
2 to ruthenium. This suggests that ruthenium migration via the aromatic system might be possible.
-
-
-
-
30
-
-
34748866585
-
-
See the Supporting Information for discussion of Bäckvall's observation10 of an intermolecular trapping of an intermediate in the reduction of an imine by 1′ in the presence of an amine
-
10 of an intermolecular trapping of an intermediate in the reduction of an imine by 1′ in the presence of an amine.
-
-
-
-
31
-
-
34748891126
-
-
We initially anticipated that the strength of the hydrogen bond of D′ would be greater than that of D due to the increased electron donation from p-NH2C6H4 versus Ph [p-NH2C6H4NH3, pKa, 6.08) is less acidic than anilinium C6H 5NH3, pKa, 4.58, During the review process, a referee pointed out that the cyclohexyl substituent of D′ would weaken the hydrogen bond as compared to the benzyl substituent on D [PhCH2NH3, pKa, 9.30) is more acidic than c-C6H 11NH3, pKa, 10.64, These pKa values nearly offset the anticipated difference between substrates D and D′, a Brown, H. C, McDaniel, D. H, Hafliger, O. Di
-
a values nearly offset the anticipated difference between substrates D and D′. (a) Brown, H. C.; McDaniel, D. H.; Hafliger, O. Dissociation Constants. In Determination of Organic Structures by Physical Methods; Braude, E. A., Nachod, F. C., Eds.; Academic Press: New York, 1955; Vol. 1, p 590.
-
-
-
-
32
-
-
26844528154
-
-
Jr
-
(b) Hall, H. K., Jr. J. Am. Chem. Soc. 1957, 79, 5441-5444.
-
(1957)
J. Am. Chem. Soc
, vol.79
, pp. 5441-5444
-
-
Hall, H.K.1
-
33
-
-
34248573312
-
-
The nucleophilicity parameters of amines (N) are known to deviate largely from pKa values, suggesting that the rates of hydrogen-bond breakage (k1, Scheme 4) and amine complexation (k2) are not just dependent on the pKa value. For example, PhNH3, pKa, 4.58, N, 12.99 in water) is 0.71 pKa units more acidic than p-CH3OC6H4NH3, pKa, 5.29, N, 16.53 in water, but is 3.54 N units less nucleophilic. Brotzel, F, Chu, Y. C, Mayr, H. J. Org. Chem. 2007, 72, 3679-3688
-
a = 5.29, N = 16.53 in water), but is 3.54 N units less nucleophilic. Brotzel, F.; Chu, Y. C.; Mayr, H. J. Org. Chem. 2007, 72, 3679-3688.
-
-
-
-
34
-
-
34748850053
-
-
10
-
10
-
-
-
-
35
-
-
34748870735
-
-
An inverse gated pulse sequence and a relaxation delay of 35 s were used to allow quantitative comparisons of 15N NMR integrals
-
15N NMR integrals.
-
-
-
-
36
-
-
34748816829
-
-
10
-
10
-
-
-
-
37
-
-
34748901837
-
-
15N NMR chemical shifts are reported on the δ scale with respect to nitrobenzene as the standard.
-
15N NMR chemical shifts are reported on the δ scale with respect to nitrobenzene as the standard.
-
-
-
-
38
-
-
34748848643
-
-
See the Supporting Information
-
See the Supporting Information.
-
-
-
-
39
-
-
34748864138
-
-
Coupling of the unbound nitrogen to the NH hydrogen averages to zero due to rapid exchange processes. This was confirmed by obtaining a non-decoupled 15N NMR spectrum of the products of reduction of 12 that showed no coupling between 15N and 1H for trans-16-RuN,15N
-
15N.
-
-
-
-
40
-
-
34748839586
-
-
15N-23). See the Supporting Information.
-
15N-23). See the Supporting Information.
-
-
-
-
41
-
-
34748876566
-
-
For a more detailed discussion of benzylamine as an intermolecular trap in the reduction of imine 12 by 1, see the Supporting Information.
-
For a more detailed discussion of benzylamine as an intermolecular trap in the reduction of imine 12 by 1, see the Supporting Information.
-
-
-
-
42
-
-
34748832250
-
-
15N,N from intermediate E″ could also proceed directly from E″ to the respective amine complex without a hydrogen-bonded intermediate [D″ or F″ (analogous to F′ in Scheme 6)]. This variation in the mechanism does not change the conclusions described in the text.
-
15N,N from intermediate E″ could also proceed directly from E″ to the respective amine complex without a hydrogen-bonded intermediate [D″ or F″ (analogous to F′ in Scheme 6)]. This variation in the mechanism does not change the conclusions described in the text.
-
-
-
|