메뉴 건너뛰기




Volumn 98, Issue 9, 2007, Pages 1693-1704

Cross-validated bagged learning

Author keywords

Bootstrap aggregation; Data adaptive regression; Deletion Substitution Addition algorithm; Resistant HIV

Indexed keywords


EID: 34548812833     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2007.07.004     Document Type: Article
Times cited : (11)

References (26)
  • 1
    • 18944374818 scopus 로고    scopus 로고
    • M.D. Birkner, S.E. Sinisi, M.J. van der Laan, Multiple testing and data adaptive regression: an application to HIV-1 sequence data, Statist. Appl. Genetics Molecular Biol. 4 (1), article 8, 2005. URL: 〈http://www.bepress.com/sagmb/vol4/iss1/art8〉.
  • 2
    • 0037186681 scopus 로고    scopus 로고
    • Improving nonparametric regression methods by bagging and boosting
    • Borra S., and Ciaccio A.D. Improving nonparametric regression methods by bagging and boosting. Comput. Statist. Data Anal. 38 (2002) 407-420
    • (2002) Comput. Statist. Data Anal. , vol.38 , pp. 407-420
    • Borra, S.1    Ciaccio, A.D.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learning 24 2 (1996) 123-140
    • (1996) Mach. Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. Heuristics of instability and stabilization in model selection. Ann. Statist. 24 (1996) 2350-2383
    • (1996) Ann. Statist. , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 5
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L. Stacked regressions. Mach. Learning 24 (1996) 49-64
    • (1996) Mach. Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learning 45 (2001) 5-32
    • (2001) Mach. Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 0035575477 scopus 로고    scopus 로고
    • Using iterated bagging to debias regressions
    • Breiman L. Using iterated bagging to debias regressions. Mach. Learning 45 (2001) 261-277
    • (2001) Mach. Learning , vol.45 , pp. 261-277
    • Breiman, L.1
  • 9
    • 34548835074 scopus 로고    scopus 로고
    • A. Buja, W. Stuetzle, Observations on bagging, 2002. URL: 〈http://www-stat.wharton.upenn.edu/∼buja/PAPERS/paper-bag-wxs.pdf〉.
  • 10
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • Bühlmann P., and Yu B. Analyzing bagging. Ann. Statist. 30 (2002) 927-961
    • (2002) Ann. Statist. , vol.30 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 11
    • 26644446561 scopus 로고    scopus 로고
    • Asymptotics of cross-validated risk estimation in estimator selection and performance assessment
    • Dudoit S., and van der Laan M. Asymptotics of cross-validated risk estimation in estimator selection and performance assessment. Statist. Methodology 2 2 (2005) 131-154
    • (2005) Statist. Methodology , vol.2 , Issue.2 , pp. 131-154
    • Dudoit, S.1    van der Laan, M.2
  • 12
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • discussion by A. R. Barron and X. Xiao
    • Friedman J.H. Multivariate adaptive regression splines. Ann. Statist. 19 1 (1991) 1-141 discussion by A. R. Barron and X. Xiao
    • (1991) Ann. Statist. , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.H.1
  • 13
    • 34548834812 scopus 로고    scopus 로고
    • J.H. Friedman, P. Hall, On bagging and nonlinear estimation, 2000. URL: 〈http://www-stat.stanford.edu/∼jhf/ftp/bag.ps〉.
  • 14
    • 20744442569 scopus 로고    scopus 로고
    • Properties of bagged nearest-neighbour classifiers
    • Hall P., and Samworth R.J. Properties of bagged nearest-neighbour classifiers. J. Roy. Statist. Soc. Ser. B 67 3 (2005) 363-379
    • (2005) J. Roy. Statist. Soc. Ser. B , vol.67 , Issue.3 , pp. 363-379
    • Hall, P.1    Samworth, R.J.2
  • 15
    • 19044398807 scopus 로고    scopus 로고
    • Bundling classifiers by bagging trees
    • Hothorn T., and Lausen B. Bundling classifiers by bagging trees. Comput. Statist. Data Anal. 49 4 (2005) 1068-1078
    • (2005) Comput. Statist. Data Anal. , vol.49 , Issue.4 , pp. 1068-1078
    • Hothorn, T.1    Lausen, B.2
  • 16
  • 17
    • 34548842597 scopus 로고    scopus 로고
    • M.J. van der Laan, S. Dudoit, Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: finite sample oracle inequalities and examples, Technical Report 130, Division of Biostatistics, University of California, Berkeley, November 2003, URL: 〈www.bepress.com/ucbbiostat/paper130/〉.
  • 18
    • 34548819433 scopus 로고    scopus 로고
    • M.J. van der Laan, S. Dudoit, S. Keleş, Asymptotic optimality of likelihood based cross-validation, Technical Report 125, Division of Biostatistics, University of California, Berkeley, February 2003. URL: 〈www.bepress.com/ucbbiostat/paper125/〉.
  • 19
    • 34548828071 scopus 로고    scopus 로고
    • M.J. van der Laan, S. Dudoit, A.W. van der Vaart, The cross-validated adaptive epsilon-net estimator, Technical Report 142, Division of Biostatistics, University of California, Berkeley, February 2004. URL: 〈www.bepress.com/ucbbiostat/paper142/〉.
  • 20
    • 0030342815 scopus 로고    scopus 로고
    • Combining estimates in regression and classification
    • LeBlanc M., and Tibshirani R. Combining estimates in regression and classification. J. Amer. Statist. Assoc. 91 (1996) 1641-1650
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1641-1650
    • LeBlanc, M.1    Tibshirani, R.2
  • 21
    • 34548843737 scopus 로고    scopus 로고
    • A.M. Molinaro, M.J. van der Laan, Cross-validating and bagging partitioning algorithms with variable importance, Technical Report 185, Division of Biostatistics, University of California, Berkeley, November 2005. URL: 〈www.bepress.com/ucbbiostat/paper185/〉.
  • 22
    • 0141872478 scopus 로고    scopus 로고
    • Logic regression
    • URL: 〈http://www.biostat.jhsph.edu/∼iruczins/publications/publications.html〉
    • Ruczinski I., Kooperberg C., and LeBlanc M. Logic regression. J. Comput. Graphical Statist. 12 3 (2003) 475-511. http://www.biostat.jhsph.edu/iruczins/publications/publications.html URL: 〈http://www.biostat.jhsph.edu/∼iruczins/publications/publications.html〉
    • (2003) J. Comput. Graphical Statist. , vol.12 , Issue.3 , pp. 475-511
    • Ruczinski, I.1    Kooperberg, C.2    LeBlanc, M.3
  • 23
    • 18544371304 scopus 로고    scopus 로고
    • S.E. Sinisi, M.J. van der Laan, Deletion/Substitution/Addition algorithm in learning with applications in genomics, Statist. Appl. Genetics and Molecular Biology 3 (1), article 18, 2004. URL: 〈http://www.bepress.com/sagmb/vol3/iss1/art18〉.
  • 24
    • 33847387164 scopus 로고    scopus 로고
    • S.E. Sinisi, E.C. Polley, M.L. Petersen, S.-Y. Rhee, M.J. van der Laan, Super learning: an application to the prediction of HIV-1 drug resistance, Statist. Appl. Genetics 6 (1), article 7. URL: 〈http://www.bepress.com/sagmb/vol6/iss1/art7〉.
  • 26
    • 34548824639 scopus 로고    scopus 로고
    • T. Therneau, E. Atkinson, An introduction to recursive partitioning using the rpart routines, Technical Report 61, Division of Biostatistics, Mayo Clinic, Rochester, November 1997. URL: 〈www.mayo.edu/hsr/techrpt/61.pdf〉.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.