메뉴 건너뛰기




Volumn 19, Issue 3, 2007, Pages 223-244

A systematic comparison of flat and standard cascade-correlation using a student-teacher network approximation task

Author keywords

Cascade correlation; Connectivity; Function approximation; Network depth; Neural network architectures

Indexed keywords

CASCADE-CORRELATION; COMPUTATIONAL COSTS; COMPUTATIONAL POWER; CONNECTION WEIGHTS; FUNCTION APPROXIMATION; INPUT-OUTPUT MAPPING; NETWORK APPROXIMATION; NETWORK DEPTHS;

EID: 34548348927     PISSN: 09540091     EISSN: 13600494     Source Type: Journal    
DOI: 10.1080/09540090701528951     Document Type: Article
Times cited : (6)

References (39)
  • 4
    • 34548320759 scopus 로고
    • Reducing network depth in the cascade-correlation
    • Technical Report CMU-CS-94-209, Carnegie Mellon University
    • S. Baluja and S.E.Fahlman, "Reducing network depth in the cascade-correlation". Technical Report CMU-CS-94-209, Carnegie Mellon University (1994).
    • (1994)
    • Baluja, S.1    Fahlman, S.E.2
  • 5
    • 0012113247 scopus 로고    scopus 로고
    • The developmental course of distance, time, and velocity concepts: A generative connectionist model
    • 1, pp
    • D. Buckingham and T.R. Shultz, 'The developmental course of distance, time, and velocity concepts: a generative connectionist model", J. Cognit. Dev., 1, pp. 305-345, 2000.
    • (2000) J. Cognit. Dev , pp. 305-345
    • Buckingham, D.1    Shultz, T.R.2
  • 6
    • 33745800669 scopus 로고    scopus 로고
    • An information theory analysis of visual complexity and dissimilarity
    • D.C Donderi, "An information theory analysis of visual complexity and dissimilarity", Perception, 35, pp. 823-835, 2006.
    • (2006) Perception , vol.35 , pp. 823-835
    • Donderi, D.C.1
  • 7
    • 15844403462 scopus 로고    scopus 로고
    • Compressed file length predicts search time anderrors on visual displays
    • D.C. Donderi and S. McFadden, "Compressed file length predicts search time anderrors on visual displays", Displays, 26, pp. 71-78, 2005.
    • (2005) Displays , vol.26 , pp. 71-78
    • Donderi, D.C.1    McFadden, S.2
  • 8
    • 0029699806 scopus 로고    scopus 로고
    • Improving the speed of some constructive algorithms by using a locking detection mechanism
    • S. Draghici, "Improving the speed of some constructive algorithms by using a locking detection mechanism", Neural Net. World, 6, pp. 563-575, 1996.
    • (1996) Neural Net. World , vol.6 , pp. 563-575
    • Draghici, S.1
  • 9
    • 2142796735 scopus 로고    scopus 로고
    • The constraint based decomposition (CBD) training architecture
    • S. Draghici, "The constraint based decomposition (CBD) training architecture", Neural Net., 14, pp. 527-550, 2001.
    • (2001) Neural Net , vol.14 , pp. 527-550
    • Draghici, S.1
  • 10
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • T.J. Sejnowski, G.E. Hinton and D.S. Touretzky, Eds, San Mateo, CA: Morgan Kaufmann
    • S.E. Fahlman, "Faster-learning variations on back-propagation: an empirical study", in Proceedings of the 1988 Connectionist Models Summer School, T.J. Sejnowski, G.E. Hinton and D.S. Touretzky, Eds, San Mateo, CA: Morgan Kaufmann, 1988.
    • (1988) Proceedings of the 1988 Connectionist Models Summer School
    • Fahlman, S.E.1
  • 11
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D.S. Touretzky, Ed, Los Altos, CA: Morgan Kaufmann
    • S.E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture", in Advances in Neural Information Pmcessing Systems 2, D.S. Touretzky, Ed., Los Altos, CA: Morgan Kaufmann, 1990, pp. 524-532.
    • (1990) Advances in Neural Information Pmcessing Systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 12
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • M. Frean, "The upstart algorithm: a method for constructing and training feedforward neural networks", Neural Comput., 2, pp. 198-209, 1990.
    • (1990) Neural Comput , vol.2 , pp. 198-209
    • Frean, M.1
  • 13
    • 0001278373 scopus 로고
    • Controlled growth of cascade-correlation nets
    • L.K. Hansen and M.W. Pedersen, "Controlled growth of cascade-correlation nets", in Proceedings of ICANN, 1994, pp. 797-800.
    • (1994) Proceedings of ICANN , pp. 797-800
    • Hansen, L.K.1    Pedersen, M.W.2
  • 14
    • 0030108039 scopus 로고    scopus 로고
    • The cascade-correlation learning: A projection pursuit learning perspective
    • J. Hwang, S. You, S. Lay and I. Jou, "The cascade-correlation learning: a projection pursuit learning perspective", IEEE Trans. Neural Net., 7, pp. 278-289, 1996.
    • (1996) IEEE Trans. Neural Net , vol.7 , pp. 278-289
    • Hwang, J.1    You, S.2    Lay, S.3    Jou, I.4
  • 15
    • 34548329012 scopus 로고
    • Limited fan-in random, wired cascade-correlation
    • Munich, IBM Research Division, Physics Group
    • H. Klagges and M. Soegtrop, "Limited fan-in random, wired cascade-correlation", Neuroprose Archive, Munich, IBM Research Division, Physics Group (1992).
    • (1992) Neuroprose Archive
    • Klagges, H.1    Soegtrop, M.2
  • 16
    • 0036825537 scopus 로고    scopus 로고
    • Evaluation of constructive neural networks with cascaded architectures
    • J.J.T. Lahnajarvi, M.I. Lehtokangas and J.P.P. Saarinen, "Evaluation of constructive neural networks with cascaded architectures", Neurocomputing, 48, pp. 573-607, 2002.
    • (2002) Neurocomputing , vol.48 , pp. 573-607
    • Lahnajarvi, J.J.T.1    Lehtokangas, M.I.2    Saarinen, J.P.P.3
  • 18
    • 0031276492 scopus 로고    scopus 로고
    • On the distribution of performance from multiple neural network trials
    • S. Lawrence, A.D. Back, A.C. Tsoi and C.L. Giles, "On the distribution of performance from multiple neural network trials", IEEE Trans. Neural Net., 8, pp. 1507-1517, 1997b.
    • (1997) IEEE Trans. Neural Net , vol.8 , pp. 1507-1517
    • Lawrence, S.1    Back, A.D.2    Tsoi, A.C.3    Giles, C.L.4
  • 19
    • 0013220124 scopus 로고
    • Generalization abilities of cascade network architectures
    • S.J. Hanson, J. Cowan and C.L. Giles, Eds, Los Altos, CA: Morgan Kaufmann
    • E. Littmann and H. Ritter, "Generalization abilities of cascade network architectures", in Advances in Neural Information Processing System. 5, S.J. Hanson, J. Cowan and C.L. Giles, Eds, Los Altos, CA: Morgan Kaufmann, 1993, pp. 188-195.
    • (1993) Advances in Neural Information Processing System. 5 , pp. 188-195
    • Littmann, E.1    Ritter, H.2
  • 20
    • 36149031331 scopus 로고
    • Learning feedforward networks: The tiling algorithm
    • M. Mezard and J. Nadal, "Learning feedforward networks: the tiling algorithm", J. Phys. A: Math. Gen., 22, pp. 2191-2203, 1989.
    • (1989) J. Phys. A: Math. Gen , vol.22 , pp. 2191-2203
    • Mezard, M.1    Nadal, J.2
  • 21
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural network learning algorithms for pattern classification
    • R. Parekh, J. Yang and V. Honavar, "Constructive neural network learning algorithms for pattern classification", IEEE Trans. Neural Net., 11, pp. 436-451, 2000.
    • (2000) IEEE Trans. Neural Net , vol.11 , pp. 436-451
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 22
    • 0347029918 scopus 로고    scopus 로고
    • Improving generalization performance of natural gradient learning using optimized regularization by NIC
    • H. Park, N. Murata and S. Amari, "Improving generalization performance of natural gradient learning using optimized regularization by NIC", Neural Comput, 16, pp. 355-382, 2004.
    • (2004) Neural Comput , vol.16 , pp. 355-382
    • Park, H.1    Murata, N.2    Amari, S.3
  • 23
    • 0028538768 scopus 로고
    • Connectivity and performance tradeoffs in the cascade correlation learning architecture
    • D.S. Phatak and I. Koren, "Connectivity and performance tradeoffs in the cascade correlation learning architecture", IEEE Trans. Neural Net., 5, pp. 930-935, 1994.
    • (1994) IEEE Trans. Neural Net , vol.5 , pp. 930-935
    • Phatak, D.S.1    Koren, I.2
  • 24
    • 0004042458 scopus 로고
    • PROBENl - a set of neural network benchmark, problems and benchmarking rules
    • Technical Report, Karlsruhe, Germany
    • L. Prechelt, "PROBENl - a set of neural network benchmark, problems and benchmarking rules". Technical Report, Karlsruhe, Germany (1994).
    • (1994)
    • Prechelt, L.1
  • 25
    • 0031193357 scopus 로고    scopus 로고
    • Investigation of the CasCor family of learning algorithms
    • L. Prechelt, "Investigation of the CasCor family of learning algorithms", Neural Net., 10, pp. 885-896, 1997.
    • (1997) Neural Net , vol.10 , pp. 885-896
    • Prechelt, L.1
  • 26
    • 0035388101 scopus 로고    scopus 로고
    • Neural network, design for engineering applications
    • M.Y. Rafiq, G. Bugmann and D.J. Easterbrook, "Neural network, design for engineering applications", Comput. Struct., 79, pp. 1541-1552, 2001.
    • (2001) Comput. Struct , vol.79 , pp. 1541-1552
    • Rafiq, M.Y.1    Bugmann, G.2    Easterbrook, D.J.3
  • 27
    • 0027809638 scopus 로고
    • Divide and conquer neural networks
    • S.G. Romaniuk and L.O. Hall, "Divide and conquer neural networks", Neural Net., 6, pp. 1105-1116, 1993.
    • (1993) Neural Net , vol.6 , pp. 1105-1116
    • Romaniuk, S.G.1    Hall, L.O.2
  • 28
    • 0004069068 scopus 로고    scopus 로고
    • D. Saad Ed, Cambridge: Cambridge University Press
    • D. Saad (Ed.), On-line Learning in Neural Networks, Cambridge: Cambridge University Press, 1999.
    • (1999) On-line Learning in Neural Networks
  • 31
    • 34548306320 scopus 로고    scopus 로고
    • Oxford University Press
    • Oxford University Press, 2006, pp. 61-86.
    • (2006) , pp. 61-86
  • 32
    • 0028463710 scopus 로고
    • Modeling cognitive development on balance scale phenomena
    • T.R. Shultz, D. Mareschal and W.C Schmidt, "Modeling cognitive development on balance scale phenomena", Machine Learn., 16, pp. 57-86, 1994.
    • (1994) Machine Learn , vol.16 , pp. 57-86
    • Shultz, T.R.1    Mareschal, D.2    Schmidt, W.C.3
  • 33
    • 34447315744 scopus 로고    scopus 로고
    • Why let networks grow?
    • D. Mareschal, S. Sirois, G. Westermann and M.H. Johnson, Eds, Oxford: Oxford University Press
    • T.R. Shultz, S.P. Mysore and S.R. Quartz, "Why let networks grow?", in Newoconstmctivism: Perspectives and Prospects, Vol. 2, D. Mareschal, S. Sirois, G. Westermann and M.H. Johnson, Eds, Oxford: Oxford University Press, 2007, pp. 65-98.
    • (2007) Newoconstmctivism: Perspectives and Prospects , vol.2 , pp. 65-98
    • Shultz, T.R.1    Mysore, S.P.2    Quartz, S.R.3
  • 34
    • 0035536720 scopus 로고    scopus 로고
    • Knowledge-based cascade-correlation: Using knowledge to speed learning
    • T.R. Shultz and R Rivest, "Knowledge-based cascade-correlation: using knowledge to speed learning", Connection Sci, 13, pp. 43-72, 2001.
    • (2001) Connection Sci , vol.13 , pp. 43-72
    • Shultz, T.R.1    Rivest, R.2
  • 35
    • 2542592600 scopus 로고
    • A conceptual approach to generalization in dynamic neural networks
    • PhD thesis, Aarhus University
    • S. Sjogaard, "A conceptual approach to generalization in dynamic neural networks". PhD thesis, Aarhus University (1991).
    • (1991)
    • Sjogaard, S.1
  • 39
    • 0029263319 scopus 로고
    • Prior knowledge and functionally relevant features in concept learning
    • E.J. Wisniewski, "Prior knowledge and functionally relevant features in concept learning", J. Exp. Psychol: Learn. Mem. Cognit., 21, pp. 449-468, 1995.
    • (1995) J. Exp. Psychol: Learn. Mem. Cognit , vol.21 , pp. 449-468
    • Wisniewski, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.