-
1
-
-
5844297152
-
Theory of reproducing kernels
-
Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337-404.
-
(1950)
Trans. Amer. Math. Soc
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
2
-
-
1542367492
-
Convexity, classification, and risk bounds
-
638, Department of Statistics, U.C. Berkeley
-
Bartlett, P., Jordan, M., & McAuliffe, J. (2003). Convexity, classification, and risk bounds (Technical Report 638). Department of Statistics, U.C. Berkeley.
-
(2003)
Technical Report
-
-
Bartlett, P.1
Jordan, M.2
McAuliffe, J.3
-
3
-
-
33846829559
-
On regularization algorithms in learning theory
-
Bauer, F., Pereverzev, S., & Rosasco, L. (2006). On regularization algorithms in learning theory. Journal of complexity, 23, 52-57.
-
(2006)
Journal of complexity
, vol.23
, pp. 52-57
-
-
Bauer, F.1
Pereverzev, S.2
Rosasco, L.3
-
4
-
-
3142725535
-
Semi-supervised learning on riemannian manifolds
-
Belkin, M., & Niyogi, P. (2004). Semi-supervised learning on riemannian manifolds. Machine Learning, 56, 209-239.
-
(2004)
Machine Learning
, vol.56
, pp. 209-239
-
-
Belkin, M.1
Niyogi, P.2
-
5
-
-
84898928351
-
Kernel projection machine: A new tool for pattern recognition
-
Blanchard, G., Massart, P., Vert, R., & Zwald, L. (2004). Kernel projection machine: a new tool for pattern recognition. NIPS 2004 (pp. 1649-1656).
-
(2004)
NIPS 2004
, pp. 1649-1656
-
-
Blanchard, G.1
Massart, P.2
Vert, R.3
Zwald, L.4
-
8
-
-
21844447610
-
Learning from examples as an inverse problem
-
De Vito, E., Rosasco, L., Caponnetto, A., Giovannini, U. D., & Odone, F. (2005). Learning from examples as an inverse problem. Journal of Machine Learning Research, 6, 883-904.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 883-904
-
-
De Vito, E.1
Rosasco, L.2
Caponnetto, A.3
Giovannini, U.D.4
Odone, F.5
-
9
-
-
0003277393
-
Regularization of inverse problems
-
Engl, H., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems. Mathematics and its Applications, 375.
-
(1996)
Mathematics and its Applications
, pp. 375
-
-
Engl, H.1
Hanke, M.2
Neubauer, A.3
-
11
-
-
0033459856
-
Risk bounds for model selection via penalization
-
Massart, P., Barron, A., & Birge, L. (1999). Risk bounds for model selection via penalization. Proba. Theory Relat.Fields, 113, 301-413.
-
(1999)
Proba. Theory Relat.Fields
, vol.113
, pp. 301-413
-
-
Massart, P.1
Barron, A.2
Birge, L.3
-
13
-
-
19544375922
-
Kernel principal component regression with em approach to nonlinear principal components extraction
-
CIS, University of Paisley
-
Rosipal, R., Trejo, L., & Cichocki, A. (2000). Kernel principal component regression with em approach to nonlinear principal components extraction (Technical Report). CIS, University of Paisley.
-
(2000)
Technical Report
-
-
Rosipal, R.1
Trejo, L.2
Cichocki, A.3
-
14
-
-
0002570938
-
Kernel principal component analysis
-
MIT Press
-
Scholkopf, B., Smola, A., & Muller, K. (1999). Kernel principal component analysis. In Advances in kernel methods - support vector learning, 327-352. MIT Press.
-
(1999)
Advances in kernel methods - support vector learning
, pp. 327-352
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.3
-
15
-
-
22844440983
-
On the eigenspectrum of the gram matrix and the generalisation error of kernel pca
-
Shawe-Taylor, J., Williams, C., Cristianini, N., & Kandola, J. (2004). On the eigenspectrum of the gram matrix and the generalisation error of kernel pca. IEEE Transactions on Information Theory 51 (pp. 2510-2512).
-
(2004)
IEEE Transactions on Information Theory
, vol.51
, pp. 2510-2512
-
-
Shawe-Taylor, J.1
Williams, C.2
Cristianini, N.3
Kandola, J.4
-
16
-
-
22944490838
-
Learning bounds for kernel regression using effective data dimensionality
-
Zhang, T. (2005). Learning bounds for kernel regression using effective data dimensionality. Neural Computation, 17, 2077-2098.
-
(2005)
Neural Computation
, vol.17
, pp. 2077-2098
-
-
Zhang, T.1
-
17
-
-
33847676413
-
Statistical properties of kernel principal component analyis
-
Zwald, L., Bousquet, O., & Blanchard, G. (2007). Statistical properties of kernel principal component analyis. Machine Learning, 66, 259-294.
-
(2007)
Machine Learning
, vol.66
, pp. 259-294
-
-
Zwald, L.1
Bousquet, O.2
Blanchard, G.3
|