메뉴 건너뛰기




Volumn 382, Issue 3, 2007, Pages 262-279

On the complexity of working set selection

Author keywords

Approximation algorithms; Decomposition method; Support vector machines; Working set selection

Indexed keywords

APPROXIMATION ALGORITHMS; CONVERGENCE OF NUMERICAL METHODS; OPTIMIZATION; POLYNOMIALS; PROBLEM SOLVING; SUPPORT VECTOR MACHINES;

EID: 34547830949     PISSN: 03043975     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tcs.2007.03.041     Document Type: Article
Times cited : (7)

References (34)
  • 1
    • 0026966646 scopus 로고    scopus 로고
    • Bernhard E. Boser, Isabelle M. Guyon, Vladimir N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, 1992, pp. 144-152
  • 3
    • 0034228643 scopus 로고    scopus 로고
    • The analysis of decomposition methods for support vector machines
    • Chang C.-C., Hsu C.-W., and Lin C.-J. The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks 11 4 (2000) 248-250
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.4 , pp. 248-250
    • Chang, C.-C.1    Hsu, C.-W.2    Lin, C.-J.3
  • 4
    • 34547832529 scopus 로고    scopus 로고
    • Chih-Chung Chang, Chih-Jen Lin, LIBSVM: A library for support vector machines, 2001. Available from: http://www.csie.ntu.edu.tw/~cjlin/libsvm
  • 5
    • 33646521266 scopus 로고    scopus 로고
    • Pai-Hsuen Chen, Rong-En Fan, Chih-Jen Lin, Training support vector machines via SMO-type decomposition methods, in: Proceedings of the 16th International Conference on Algorithmic Learning Theory, 2005, pp. 45-62
  • 6
    • 33746932071 scopus 로고    scopus 로고
    • A study on SMO-type decomposition methods for support vector machines
    • Chen P.-H., Fan R.-E., and Lin C.-J. A study on SMO-type decomposition methods for support vector machines. IEEE Transactions on Neural Networks 17 4 (2006) 893-908
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 893-908
    • Chen, P.-H.1    Fan, R.-E.2    Lin, C.-J.3
  • 7
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machines
    • Hsu C.-W., and Lin C.-J. A simple decomposition method for support vector machines. Machine Learning 46 1-3 (2002) 291-314
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 291-314
    • Hsu, C.-W.1    Lin, C.-J.2
  • 8
    • 33646392997 scopus 로고    scopus 로고
    • QP algorithms with guaranteed accuracy and run time for support vector machines
    • Hush D., Kelly P., Scovel C., and Steinwart I. QP algorithms with guaranteed accuracy and run time for support vector machines. Journal of Machine Learning Research 7 (2007) 733-769
    • (2007) Journal of Machine Learning Research , vol.7 , pp. 733-769
    • Hush, D.1    Kelly, P.2    Scovel, C.3    Steinwart, I.4
  • 9
    • 0037399781 scopus 로고    scopus 로고
    • Polynomial-time decomposition algorithms for support vector machines
    • Hush D., and Scovel C. Polynomial-time decomposition algorithms for support vector machines. Machine Learning 51 1 (2003) 51-71
    • (2003) Machine Learning , vol.51 , Issue.1 , pp. 51-71
    • Hush, D.1    Scovel, C.2
  • 10
    • 0016560084 scopus 로고
    • Fast approximation algorithms for knapsack and sum of subset problem
    • Ibarra O.H., and Kim C.E. Fast approximation algorithms for knapsack and sum of subset problem. Journal of the Association on Computing Machinery 22 4 (1975) 463-468
    • (1975) Journal of the Association on Computing Machinery , vol.22 , Issue.4 , pp. 463-468
    • Ibarra, O.H.1    Kim, C.E.2
  • 11
    • 0002714543 scopus 로고    scopus 로고
    • Making large scale SVM learning practical
    • Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press
    • Joachims T. Making large scale SVM learning practical. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1998), MIT Press 169-184
    • (1998) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 12
    • 0003037529 scopus 로고
    • Reducibility among combinatorial problems
    • Miller R.E., and Thatcher J.W. (Eds), Plenum Press
    • Karp R.M. Reducibility among combinatorial problems. In: Miller R.E., and Thatcher J.W. (Eds). Complexity of Computer Computations (1972), Plenum Press 85-103
    • (1972) Complexity of Computer Computations , pp. 85-103
    • Karp, R.M.1
  • 13
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • Sathiya Keerthi S., and Gilbert E.G. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning 46 1-3 (2002) 351-360
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 351-360
    • Sathiya Keerthi, S.1    Gilbert, E.G.2
  • 16
    • 0012792757 scopus 로고
    • On the existence of fast approximation schemes
    • Mangasarian O.L., Meyer R.R., and Robinson S.M. (Eds), Academic Press
    • Korte B., and Schrader R. On the existence of fast approximation schemes. In: Mangasarian O.L., Meyer R.R., and Robinson S.M. (Eds). Nonlinear Programming vol. 4 (1981), Academic Press 415-437
    • (1981) Nonlinear Programming , vol.4 , pp. 415-437
    • Korte, B.1    Schrader, R.2
  • 17
    • 0036158636 scopus 로고    scopus 로고
    • Feasible direction decomposition algorithms for training support vector machines
    • Laskov P. Feasible direction decomposition algorithms for training support vector machines. Machine Learning 46 1-3 (2002) 315-349
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 315-349
    • Laskov, P.1
  • 18
    • 0040081684 scopus 로고    scopus 로고
    • A note on the decomposition methods for support vector regression
    • Liao S.-P., Lin H.-T., and Lin C.-J. A note on the decomposition methods for support vector regression. Neural Computation 14 6 (2002) 1267-1281
    • (2002) Neural Computation , vol.14 , Issue.6 , pp. 1267-1281
    • Liao, S.-P.1    Lin, H.-T.2    Lin, C.-J.3
  • 19
    • 34547847632 scopus 로고    scopus 로고
    • Chih-Jen Lin, Linear convergence of a decomposition method for support vector machines, 2001. Available from: http://www.csie.ntu.edu.tw/~cjlin/papers/linearconv.pdf
  • 20
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Lin C.-J. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks 12 6 (2001) 1288-1298
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1288-1298
    • Lin, C.-J.1
  • 21
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • Lin C.-J. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks 13 1 (2002) 248-250
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 248-250
    • Lin, C.-J.1
  • 22
    • 0036737295 scopus 로고    scopus 로고
    • A formal analysis of stopping criteria of decomposition methods for support vector machines
    • Lin C.-J. A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Transactions on Neural Networks 13 5 (2002) 1045-1052
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.5 , pp. 1045-1052
    • Lin, C.-J.1
  • 23
    • 34547836536 scopus 로고    scopus 로고
    • Nikolas List, Personal communication
  • 24
    • 22944453692 scopus 로고    scopus 로고
    • Nikolas List, Convergence of a generalized gradient selection approach for the decomposition method, in: Proceedings of the 15th International Conference on Algorithmic Learning Theory, 2004, pp. 338-349
  • 25
    • 9444296042 scopus 로고    scopus 로고
    • Nikolas List, Hans Ulrich Simon, A general convergence theorem for the decomposition method, in: Proceedings of the 17th Annual Conference on Computational Learning Theory, 2004, pp. 363-377
  • 26
    • 26944489027 scopus 로고    scopus 로고
    • Nikolas List, Hans Ulrich Simon, General polynomial time decomposition algorithms, in: Proceedings of the 17th Annual Conference on Computational Learning Theory, 2005, pp. 308-322
  • 30
    • 0030673582 scopus 로고    scopus 로고
    • Edgar E. Osuna, Robert Freund, Federico Girosi, Training support vector machines: An application to face detection, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1997, pp. 130-136
  • 31
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1998), MIT Press 185-208
    • (1998) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 32
    • 34547836532 scopus 로고    scopus 로고
    • Craig Saunders, Mark O. Stitson, Jason Weston, Leon Bottou, Bernhard Schölkopf, Alexander J. Smola, Support vector machine reference manual, Technical Report CSD-TR-98-03, Royal Holloway, University of London, Egham, UK, 1998
  • 33
    • 22944492712 scopus 로고    scopus 로고
    • Hans Ulrich Simon, On the complexity of working set selection, in: Proceedings of the 15th International Conference on Algorithmic Learning Theory, 2004, pp. 324-337


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.