-
2
-
-
0034228643
-
The analysis of decomposition methods for support vector machines
-
C.-C. Chang, C.-W. Hsu, and C.-J. Lin. The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 11(4):1003-1008, 2000.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.4
, pp. 1003-1008
-
-
Chang, C.-C.1
Hsu, C.-W.2
Lin, C.-J.3
-
4
-
-
26944441889
-
A study on SMO-type decomposition methods for support vector machines
-
Department of Computer Science, National Taiwan University
-
P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study on SMO-type decomposition methods for support vector machines. Technical report, Department of Computer Science, National Taiwan University, 2005. http://www.csie.ntu.edu.tw/~cjlin/ papers/generalSMO.pdf.
-
(2005)
Technical Report
-
-
Chen, P.-H.1
Fan, R.-E.2
Lin, C.-J.3
-
5
-
-
34249753618
-
Support-vector network
-
C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
6
-
-
26944501776
-
Working set selection using the second order information for training SVM
-
Department of Computer Science, National Taiwan University
-
R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information for training SVM. Technical report, Department of Computer Science, National Taiwan University, 2005.
-
(2005)
Technical Report
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
7
-
-
0037399781
-
Polynomial-time decomposition algorithms for support vector machines
-
D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support vector machines. Machine Learning, 51:51-71, 2003.
-
(2003)
Machine Learning
, vol.51
, pp. 51-71
-
-
Hush, D.1
Scovel, C.2
-
8
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
9
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design
-
S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46:351-360, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
10
-
-
0013376452
-
On the role of the threshold parameter in SVM training algorithms
-
Department of Mechanical and Production Engineering, National University of Singapore, Singapore
-
S. S. Keerthi and C. J. Ong. On the role of the threshold parameter in SVM training algorithms. Technical Report CD-00-09, Department of Mechanical and Production Engineering, National University of Singapore, Singapore, 2000.
-
(2000)
Technical Report CD-00-09
-
-
Keerthi, S.S.1
Ong, C.J.2
-
11
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13:637-649, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
12
-
-
0038178786
-
Linear convergence of a decomposition method for support vector machines
-
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
-
C.-J. Lin. Linear convergence of a decomposition method for support vector machines. Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2001.
-
(2001)
Technical Report
-
-
Lin, C.-J.1
-
13
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
C.-J. Lin. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 12(6):1288-1298, 2001.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.6
, pp. 1288-1298
-
-
Lin, C.-J.1
-
14
-
-
0036129250
-
Asymptotic convergence of an SMO algorithm without any assumptions
-
C.-J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks, 13(1):248-250, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.1
, pp. 248-250
-
-
Lin, C.-J.1
-
15
-
-
0036737295
-
A formal analysis of stopping criteria of decomposition methods for support vector machines
-
C.-J. Lin. A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 13(5):1045-1052, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.5
, pp. 1045-1052
-
-
Lin, C.-J.1
-
17
-
-
0030673582
-
Training support vector machines: An application to face detection
-
New York, NY, IEEE
-
E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In Proceedings of CVPR'97, pages 130-136, New York, NY, 1997. IEEE.
-
(1997)
Proceedings of CVPR'97
, pp. 130-136
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
19
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA . MIT Press
-
J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Platt, J.C.1
|