-
1
-
-
34547340048
-
-
arXiv:cond-mat/0701026.
-
C. Toke and J.K. Jain, arXiv:cond-mat/0701026.
-
-
-
Toke, C.1
Jain, J.K.2
-
2
-
-
27744534165
-
-
NATUAS 0028-0836 10.1038/nature04233
-
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature (London) NATUAS 0028-0836 438, 197 (2005). 10.1038/nature04233
-
(2005)
Nature (London)
, vol.438
, pp. 197
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Katsnelson, M.I.5
Grigorieva, I.V.6
Dubonos, S.V.7
Firsov, A.A.8
-
3
-
-
27744475163
-
-
NATUAS 0028-0836 10.1038/nature04235
-
Y. Zhang, Y. Tan, H.L. Stormer, and P. Kim, Nature (London) NATUAS 0028-0836 438, 201 (2005). 10.1038/nature04235
-
(2005)
Nature (London)
, vol.438
, pp. 201
-
-
Zhang, Y.1
Tan, Y.2
Stormer, H.L.3
Kim, P.4
-
4
-
-
27144527241
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.066809
-
Y.P. Shkolnikov, S. Misra, N.C. Bishop, E.P. De Poortere, and M. Shayegan, Phys. Rev. Lett. 95, 066809 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.066809
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 066809
-
-
Shkolnikov, Y.P.1
Misra, S.2
Bishop, N.C.3
De Poortere, E.P.4
Shayegan, M.5
-
5
-
-
34547264200
-
-
PSSBBD 0370-1972 10.1002/pssb.200642212
-
M. Shayegan, E.P. De Poortere, O. Gunawan, Y.P. Shkolnikov, E. Tutuc, and K. Vakili, Phys. Status Solidi B PSSBBD 0370-1972 243, 3629 (2006). 10.1002/pssb.200642212
-
(2006)
Phys. Status Solidi B
, vol.243
, pp. 3629
-
-
Shayegan, M.1
De Poortere, E.P.2
Gunawan, O.3
Shkolnikov, Y.P.4
Tutuc, E.5
Vakili, K.6
-
6
-
-
19644401323
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.156805
-
K. Lai, W. Pan, D.C. Tsui, S.A. Lyon, M. Muhlberger, and F. Schaffler, Phys. Rev. Lett. 93, 156805 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93. 156805
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 156805
-
-
Lai, K.1
Pan, W.2
Tsui, D.C.3
Lyon, S.A.4
Muhlberger, M.5
Schaffler, F.6
-
7
-
-
79955983351
-
-
APPLAB 0003-6951 10.1063/1.1456265
-
E.P. De Poortere, Y.P. Shkolnikov, E. Tutuc, S.J. Papadakis, M. Shayegan, E. Palm, and T. Murphy, Appl. Phys. Lett. 80, 1583 (2002). APPLAB 0003-6951 10.1063/1.1456265
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 1583
-
-
De Poortere, E.P.1
Shkolnikov, Y.P.2
Tutuc, E.3
Papadakis, S.J.4
Shayegan, M.5
Palm, E.6
Murphy, T.7
-
8
-
-
0000270607
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.63.199
-
J.K. Jain, Phys. Rev. Lett. 63, 199 (1989). PRLTAO 0031-9007 10.1103/PhysRevLett.63.199
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 199
-
-
Jain, J.K.1
-
9
-
-
0001561066
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.47.7312
-
B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev. B PRBMDO 0163-1829 47, 7312 (1993). 10.1103/PhysRevB.47.7312
-
(1993)
Phys. Rev. B
, vol.47
, pp. 7312
-
-
Halperin, B.I.1
Lee, P.A.2
Read, N.3
-
10
-
-
0003490204
-
-
edited by S. Das Sarma and A. Pinczuk (Wiley, New York
-
Perspectives in Quantum Hall Effects, edited by, S. Das Sarma, and, A. Pinczuk, (Wiley, New York, 1996).
-
(1996)
Perspectives in Quantum Hall Effects
-
-
-
11
-
-
33750587841
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.97.186404
-
O. Gunawan, Y.P. Shkolnikov, K. Vakili, T. Gokmen, E.P. De Poortere, and M. Shayegan, Phys. Rev. Lett. 97, 186404 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.97.186404
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 186404
-
-
Gunawan, O.1
Shkolnikov, Y.P.2
Vakili, K.3
Gokmen, T.4
De Poortere, E.P.5
Shayegan, M.6
-
12
-
-
0001682730
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.75.3926
-
R.R. Du, A.S. Yeh, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 75, 3926 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.75.3926
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3926
-
-
Du, R.R.1
Yeh, A.S.2
Stormer, H.L.3
Tsui, D.C.4
Pfeiffer, L.N.5
West, K.W.6
-
13
-
-
0001035725
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.80.4237
-
K. Park and J.K. Jain, Phys. Rev. Lett. 80, 4237 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.80.4237
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 4237
-
-
Park, K.1
Jain, J.K.2
-
14
-
-
0942277732
-
-
APPLAB 0003-6951 10.1063/1.1635963
-
M. Shayegan, K. Karrai, Y.P. Shkolnikov, K. Vakili, E.P. De Poortere, and S. Manus, Appl. Phys. Lett. 83, 5235 (2003). APPLAB 0003-6951 10.1063/1.1635963
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 5235
-
-
Shayegan, M.1
Karrai, K.2
Shkolnikov, Y.P.3
Vakili, K.4
De Poortere, E.P.5
Manus, S.6
-
15
-
-
34547348431
-
-
To draw the fan diagram of Fig. 3 at zero strain, we need to know the ratio of the Zeeman and cyclotron energies; this ratio is equal to 2m0 times the product of the effective g factor and cyclotron effective mass. In our system, the band value for the cyclotron effective mass is mb=(m mt)1/2 where m =1.1m0 and mt=0.21m0 are the longitudinal and transverse effective masses, m0 is the free electron mass. The band g factor is 2. These parameters become enhanced due to interaction; we denote the enhanced values as g* and m*.
-
To draw the fan diagram of Fig. 3 at zero strain, we need to know the ratio of the Zeeman and cyclotron energies; this ratio is equal to 2m0 times the product of the effective g factor and cyclotron effective mass. In our system, the band value for the cyclotron effective mass is mb=(m mt)1/2 where m =1.1m0 and mt=0.21m0 are the longitudinal and transverse effective masses, m0 is the free electron mass. The band g factor is 2. These parameters become enhanced due to interaction; we denote the enhanced values as g* and m*.
-
-
-
-
16
-
-
3242689941
-
-
Coincidence measurements in tilted magnetic fields indicate a product g*m*=2.2×gbmb for our system [10.1103/PhysRevLett.92.246804 0031-9007 PRLTAO
-
Coincidence measurements in tilted magnetic fields indicate a product g*m*=2.2×gbmb for our system [Y.P. Shkolnikov, Phys. Rev. Lett. 92, 246804 (2004)]. PRLTAO 0031-9007 10.1103/PhysRevLett.92.246804
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 246804
-
-
Shkolnikov, Y.P.1
-
17
-
-
34248678872
-
-
Similar to the case of spin described in the previous reference, we need to know the ratio of the valley splitting and cyclotron energies to draw the fan diagram in Fig. 3 at finite values of strain; this ratio is equal to times the product of the effective conduction band deformation potential and cyclotron effective mass. The band value of the conduction band deformation potential E2,b is 5.8 eV [PRBMDO 0163-1829 10.1103/PhysRevB.44.8312
-
Similar to the case of spin described in the previous reference, we need to know the ratio of the valley splitting and cyclotron energies to draw the fan diagram in Fig. 3 at finite values of strain; this ratio is equal to times the product of the effective conduction band deformation potential and cyclotron effective mass. The band value of the conduction band deformation potential E2,b is 5.8 eV [S. Charbonneau, Phys. Rev. B PRBMDO 0163-1829 44, 8312 (1991)], the cyclotron mass is discussed in the previous reference. These parameters are also renormalized due to interaction; we denote the enhanced values as E2* and m*. 10.1103/PhysRevB.44.8312
-
(1991)
Phys. Rev. B
, vol.44
, pp. 8312
-
-
Charbonneau, S.1
-
18
-
-
34547242574
-
-
Coincidence measurements as a function of applied strain indicate a product E2*m*=1.7×E2,bmb for the electrons in our system.
-
Coincidence measurements as a function of applied strain indicate a product E2*m*=1.7×E2,bmb for the electrons in our system.
-
-
-
-
19
-
-
36049053894
-
-
PHRVAO 0031-899X 10.1103/PhysRev.174.823
-
F.F. Fang and P.J. Stiles, Phys. Rev. 174, 823 (1968). PHRVAO 0031-899X 10.1103/PhysRev.174.823
-
(1968)
Phys. Rev.
, vol.174
, pp. 823
-
-
Fang, F.F.1
Stiles, P.J.2
-
20
-
-
0031144635
-
-
SSTEET 0268-1242 10.1088/0268-1242/12/5/001
-
R.L. Willett, Semicond. Sci. Technol. 12, 495 (1997). SSTEET 0268-1242 10.1088/0268-1242/12/5/001
-
(1997)
Semicond. Sci. Technol.
, vol.12
, pp. 495
-
-
Willett, R.L.1
|