메뉴 건너뛰기




Volumn 51, Issue 12, 2007, Pages 6367-6379

The Bayes factor for inequality and about equality constrained models

Author keywords

Bayesian model selection; Encompassing prior; Objective bayesian inference; Ordered parameters

Indexed keywords

BAYESIAN NETWORKS; MATHEMATICAL MODELS; OPTIMIZATION; PARAMETER ESTIMATION;

EID: 34547203118     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2007.01.024     Document Type: Article
Times cited : (107)

References (39)
  • 2
    • 0036743648 scopus 로고    scopus 로고
    • The analysis of contingency tables under inequality constraints
    • Agresti A., and Coull B.A. The analysis of contingency tables under inequality constraints. J Statis. Plann. Inference 1-2 (2002) 45-73
    • (2002) J Statis. Plann. Inference , vol.1-2 , pp. 45-73
    • Agresti, A.1    Coull, B.A.2
  • 3
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike H. Factor analysis and AIC. Psychometrika 52 (1987) 317-332
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 5
    • 84972514254 scopus 로고
    • Testing precise hypotheses
    • Berger J.O., and Delampady M. Testing precise hypotheses. Statist. Sci. 2 (1987) 317-352
    • (1987) Statist. Sci. , vol.2 , pp. 317-352
    • Berger, J.O.1    Delampady, M.2
  • 6
    • 0000298252 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for model selection and prediction
    • Berger J., and Pericchi L. The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91 (1996) 109-122
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 109-122
    • Berger, J.1    Pericchi, L.2
  • 7
    • 34547224803 scopus 로고    scopus 로고
    • Berger, J., Pericchi, L., 2001. Objective Bayesian methods for model selection: introduction and comparison. In: Lahiri, P. (Ed.), Model Selection. Monograph Series, vol. 38, Institute of Mathematical Statistics Lecture Notes, Beachwood, Ohio, pp. 135-207.
  • 8
    • 84950900304 scopus 로고
    • Testing of a point null hypothesis: the irreconcilability of significance levels and evidence (with Discussion)
    • Berger J., and Sellke T. Testing of a point null hypothesis: the irreconcilability of significance levels and evidence (with Discussion). J. Amer. Statist. Assoc. 82 (1987) 112-139
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 112-139
    • Berger, J.1    Sellke, T.2
  • 10
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions
    • Bozdogan H. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52 (1987) 345-370
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 11
    • 0000506629 scopus 로고
    • Bayesian model choice via Markov Chain Monte Carlo methods
    • Carlin B.P., and Chib S. Bayesian model choice via Markov Chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B 57 (1995) 473-484
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 473-484
    • Carlin, B.P.1    Chib, S.2
  • 13
    • 84921386393 scopus 로고
    • Reconciling Bayesian and frequentist evidence in the one-sided testing problems (with discussion)
    • Casella G., and Berger R.L. Reconciling Bayesian and frequentist evidence in the one-sided testing problems (with discussion). J. Amer. Statist. Assoc. 82 (1987) 106-111
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 106-111
    • Casella, G.1    Berger, R.L.2
  • 14
    • 0031527297 scopus 로고    scopus 로고
    • On Monte Carlo methods for estimating ratios of normalizing constants
    • Chen M.H., and Shao Q.M. On Monte Carlo methods for estimating ratios of normalizing constants. Ann. Statist. 25 (1997) 1563-1594
    • (1997) Ann. Statist. , vol.25 , pp. 1563-1594
    • Chen, M.H.1    Shao, Q.M.2
  • 15
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • Chib S. Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90 (1995) 1313-1321
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 17
    • 34547226978 scopus 로고    scopus 로고
    • Dykstra, R.L., Robertson, T., Silvapulle, M.J. (Eds.), 2002. Statistical inference under inequality constraints [Special issue]. J. Statist. PLann. Inference 107, 1 2.
  • 18
    • 0000539315 scopus 로고
    • Bayesian model choice: asymptotics and exact calculations
    • Gelfand A.E., and Dey D. Bayesian model choice: asymptotics and exact calculations. J. Roy. Statist. Soc. Ser. B 56 (1994) 501-514
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 501-514
    • Gelfand, A.E.1    Dey, D.2
  • 19
    • 84950453504 scopus 로고
    • Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling
    • Gelfand A.E., Smith A.F.M., and Lee T. Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Amer. Statist. Assoc. 87 (1992) 523-532
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 523-532
    • Gelfand, A.E.1    Smith, A.F.M.2    Lee, T.3
  • 21
    • 77956889087 scopus 로고
    • Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination
    • Green P.J. Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 22
    • 0442312140 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo methods for computing Bayes factors: a comparative review
    • Han C., and Carlin B.P. Markov Chain Monte Carlo methods for computing Bayes factors: a comparative review. J. Amer. Statist. Assoc. 96 (2001) 1122-1132
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1122-1132
    • Han, C.1    Carlin, B.P.2
  • 26
    • 15544367861 scopus 로고    scopus 로고
    • Bayesian model selection using encompassing priors
    • Klugkist I., Kato B., and Hoijtink H. Bayesian model selection using encompassing priors. Statist. Neerlandica 59 (2005) 5769
    • (2005) Statist. Neerlandica , vol.59 , pp. 5769
    • Klugkist, I.1    Kato, B.2    Hoijtink, H.3
  • 27
    • 0033460110 scopus 로고    scopus 로고
    • Bayes factors: what they are and what they are not
    • Lavine M., and Schervish M.J. Bayes factors: what they are and what they are not. Amer. Statist. 53 (1999) 119-122
    • (1999) Amer. Statist. , vol.53 , pp. 119-122
    • Lavine, M.1    Schervish, M.J.2
  • 28
    • 1042297982 scopus 로고    scopus 로고
    • Compatible Priors for Causal Bayesian Networks
    • Bernardo J.M., Bayarri M.J., Berger J.O., Dawid A.P., Heckerman D., Smith A.F.M., and West M. (Eds), Clarendon Press, Oxford
    • Leucari V., and Consonni G. Compatible Priors for Causal Bayesian Networks. In: Bernardo J.M., Bayarri M.J., Berger J.O., Dawid A.P., Heckerman D., Smith A.F.M., and West M. (Eds). Bayesian Statistics vol. 7 (2003), Clarendon Press, Oxford 597-606
    • (2003) Bayesian Statistics , vol.7 , pp. 597-606
    • Leucari, V.1    Consonni, G.2
  • 29
    • 0000810338 scopus 로고
    • A statistical paradox
    • Lindley D.V. A statistical paradox. Biometrika 44 (1957) 187-192
    • (1957) Biometrika , vol.44 , pp. 187-192
    • Lindley, D.V.1
  • 30
    • 22544471809 scopus 로고    scopus 로고
    • Objective Bayesian methods for one-sided testing
    • Moreno E. Objective Bayesian methods for one-sided testing. Test 14 (2005) 181-198
    • (2005) Test , vol.14 , pp. 181-198
    • Moreno, E.1
  • 31
    • 0003078723 scopus 로고
    • Approximate Bayesian inference by the weighted likelihood bootstrap
    • Newton M.A., and Raftery A.E. Approximate Bayesian inference by the weighted likelihood bootstrap. J. Roy. Statist. Soc. Ser. B 42 (1994) 213-220
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.42 , pp. 213-220
    • Newton, M.A.1    Raftery, A.E.2
  • 34
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Ann. Statist. 6 (1978) 461-464
    • (1978) The Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 36
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • Smith A.F.M., and Roberts G.O. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B 55 (1993) 3-23
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 39
    • 0039026915 scopus 로고
    • Posterior odds ratios for selected regression hypotheses
    • Bernardo J.M., DeGroot M.H., Lindley D.V., and Smith A.F.M. (Eds), University Press, Valencia
    • Zellner A., and Siow A. Posterior odds ratios for selected regression hypotheses. In: Bernardo J.M., DeGroot M.H., Lindley D.V., and Smith A.F.M. (Eds). Bayesian Statistics (1980), University Press, Valencia 585-603
    • (1980) Bayesian Statistics , pp. 585-603
    • Zellner, A.1    Siow, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.