메뉴 건너뛰기




Volumn , Issue , 2006, Pages 13-14

Can we use linear Gaussian networks to model dynamic interactions among genes? Results from a simulation study

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; CONTROL THEORY; EIGENVALUES AND EIGENFUNCTIONS; ELECTRON BEAM LITHOGRAPHY; FLOW INTERACTIONS; GENES; INFERENCE ENGINES; KNOWLEDGE BASED SYSTEMS; MILITARY DATA PROCESSING; ROBUST CONTROL; SIGNAL PROCESSING; THROUGHPUT; TRELLIS CODES;

EID: 34547219811     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/GENSIPS.2006.353132     Document Type: Conference Paper
Times cited : (2)

References (6)
  • 2
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks,
    • Technical Report, Berkeley, CA Computer Science Division, University of California
    • K. Murphy and S. Mian, "Modelling gene expression data using dynamic Bayesian networks," Technical Report, Berkeley, CA Computer Science Division, University of California, 1999.
    • (1999)
    • Murphy, K.1    Mian, S.2
  • 3
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • S. Kim, S. Imoto, and S. Miyano, "Inferring gene networks from time series microarray data using dynamic Bayesian networks," Briefings in Bioinformatics, vol. 4, pp. 228-235, 2003.
    • (2003) Briefings in Bioinformatics , vol.4 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovitz, "A Bayesian method for the induction of probabilistic networks from data," Machine Learning, vol. 9, pp. 309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovitz, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.