-
1
-
-
14244263496
-
-
For selected recent reviews on gold catalysis, see: a
-
For selected recent reviews on gold catalysis, see: (a) Hoffmann-Röder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387.
-
(2005)
Org. Biomol. Chem
, vol.3
, pp. 387
-
-
Hoffmann-Röder, A.1
Krause, N.2
-
5
-
-
33750400849
-
-
For a recent review of gold-catalyzed hydroamination, see
-
(e) For a recent review of gold-catalyzed hydroamination, see: Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 4555.
-
(2006)
Eur. J. Org. Chem
, pp. 4555
-
-
Widenhoefer, R.A.1
Han, X.2
-
6
-
-
0002913891
-
-
For examples of gold-catalyzed hydroamination of alkynes, see: (a) Fukuda, Y, Utimoto, K, Nozaki, H. Heterocycles 1987, 25, 297
-
For examples of gold-catalyzed hydroamination of alkynes, see: (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles 1987, 25, 297.
-
-
-
-
8
-
-
0000599366
-
-
(c) Müller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A.-K.; Walter, E.; Yan, Y.-K. Organometallics 2000, 19, 170.
-
(2000)
Organometallics
, vol.19
, pp. 170
-
-
Müller, T.E.1
Grosche, M.2
Herdtweck, E.3
Pleier, A.-K.4
Walter, E.5
Yan, Y.-K.6
-
9
-
-
0000078290
-
-
(d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
-
(2001)
Adv. Synth. Catal
, vol.343
, pp. 443
-
-
Arcadi, A.1
Giuseppe, S.D.2
Marinelli, F.3
Rossi, E.4
-
10
-
-
0035976093
-
-
(e) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Tetrahedron: Asymmetry 2001, 12, 2715.
-
(2001)
Tetrahedron: Asymmetry
, vol.12
, pp. 2715
-
-
Arcadi, A.1
Giuseppe, S.D.2
Marinelli, F.3
Rossi, E.4
-
11
-
-
0141744599
-
-
(f) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
-
(2003)
Org. Lett
, vol.5
, pp. 3349
-
-
Mizushima, E.1
Hayashi, T.2
Tanaka, M.3
-
12
-
-
29844454802
-
-
(g) Luo, Y.; Li, Z.; Li, C.-J. Org. Lett. 2005, 7, 2675.
-
(2005)
Org. Lett
, vol.7
, pp. 2675
-
-
Luo, Y.1
Li, Z.2
Li, C.-J.3
-
13
-
-
31544457581
-
-
(h) Zhou, C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325.
-
(2006)
Org. Lett
, vol.8
, pp. 325
-
-
Zhou, C.-Y.1
Chan, P.W.H.2
Che, C.-M.3
-
14
-
-
33646024927
-
-
(i) Kadzimirsz, D.; Hildebrandt, D.; Merz, K.; Dyker, G. Chem. Commun. 2006, 661.
-
(2006)
Chem. Commun
, pp. 661
-
-
Kadzimirsz, D.1
Hildebrandt, D.2
Merz, K.3
Dyker, G.4
-
15
-
-
33747241421
-
-
(j) Kang, J.-E.; Kim, H.-B.; Lee, J.-W.; Shin, S. Org. Lett. 2006, 8, 3537.
-
(2006)
Org. Lett
, vol.8
, pp. 3537
-
-
Kang, J.-E.1
Kim, H.-B.2
Lee, J.-W.3
Shin, S.4
-
16
-
-
33750864547
-
-
(k) Hashmi, A. S. K.; Rudolph, M.; Schymura, S.; Visus, J.; Frey, W. Eur. J. Org. Chem. 2006, 4905.
-
(2006)
Eur. J. Org. Chem
, pp. 4905
-
-
Hashmi, A.S.K.1
Rudolph, M.2
Schymura, S.3
Visus, J.4
Frey, W.5
-
17
-
-
33847787790
-
-
(l) Zhang, Y.; Donahue, J. P.; Li, C.-J. Org. Lett. 2007, 9, 627.
-
(2007)
Org. Lett
, vol.9
, pp. 627
-
-
Zhang, Y.1
Donahue, J.P.2
Li, C.-J.3
-
18
-
-
8744284583
-
-
For examples of gold-catalyzed hydroamination of allenes, see: (a) Krause, N, Morita, N. Org. Lett. 2004, 6, 4121
-
For examples of gold-catalyzed hydroamination of allenes, see: (a) Krause, N.; Morita, N. Org. Lett. 2004, 6, 4121.
-
-
-
-
20
-
-
33744549791
-
-
(c) Patil, N. T.; Lutete, L. M.; Nishina, N.; Yamamoto, Y. Tetrahedron Lett. 2006, 47, 4749.
-
(2006)
Tetrahedron Lett
, vol.47
, pp. 4749
-
-
Patil, N.T.1
Lutete, L.M.2
Nishina, N.3
Yamamoto, Y.4
-
21
-
-
33746048429
-
-
(d) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 9066
-
-
Zhang, Z.1
Liu, C.2
Kinder, R.E.3
Han, X.4
Qian, H.5
Widenhoefer, R.A.6
-
23
-
-
33847664670
-
-
(f) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 2452
-
-
LaLonde, R.L.1
Sherry, B.D.2
Kang, E.J.3
Toste, F.D.4
-
24
-
-
33244465401
-
-
For examples of gold-catalyzed hydroamination of alkenes, see: (a) Zhang, J, Yang, C.-G, He, C. J. Am. Chem. Soc. 2006, 128, 1798
-
For examples of gold-catalyzed hydroamination of alkenes, see: (a) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798.
-
-
-
-
27
-
-
33746110458
-
-
(d) Liu, X.-Y.; Li, C.-H.; Che, C.-M. Org. Lett. 2006, 8, 2707.
-
(2006)
Org. Lett
, vol.8
, pp. 2707
-
-
Liu, X.-Y.1
Li, C.-H.2
Che, C.-M.3
-
28
-
-
33748945851
-
-
(e) Shi, M.; Liu, L.-P.; Tang, J. Org. Lett. 2006, 8, 4043.
-
(2006)
Org. Lett
, vol.8
, pp. 4043
-
-
Shi, M.1
Liu, L.-P.2
Tang, J.3
-
31
-
-
1842637760
-
-
For examples of cationic gold(I)-catalyzed addition of carbon nucleophiles, see: (a) Kennedy-Smith, J. J, Staben, S. T, Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526
-
For examples of cationic gold(I)-catalyzed addition of carbon nucleophiles, see: (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526.
-
-
-
-
32
-
-
7244248645
-
-
(b) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2004, 43, 5350.
-
(2004)
Angew. Chem. Int. Ed
, vol.43
, pp. 5350
-
-
Staben, S.T.1
Kennedy-Smith, J.J.2
Toste, F.D.3
-
33
-
-
25444522675
-
-
(c) Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133.
-
(2005)
Org. Lett
, vol.7
, pp. 4133
-
-
Mezailles, N.1
Ricard, L.2
Gagosz, F.3
-
34
-
-
33845959705
-
-
(d) Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. 2006, 128, 16486.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 16486
-
-
Ochida, A.1
Ito, H.2
Sawamura, M.3
-
37
-
-
29544447401
-
-
For some recent reviews of enyne cyclization, see: g
-
For some recent reviews of enyne cyclization, see: (g) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200.
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 200
-
-
Ma, S.1
Yu, S.2
Gu, Z.3
-
38
-
-
34447499223
-
-
(h) Nieto-Oberhuber, C.; Lopez, S.; Jiménez-Núñez, E.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 5917.
-
(2006)
Chem. Eur. J
, vol.12
, pp. 5917
-
-
Nieto-Oberhuber, C.1
Lopez, S.2
Jiménez-Núñez, E.3
Echavarren, A.M.4
-
39
-
-
33845247117
-
-
(i) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271.
-
(2006)
Adv. Synth. Catal
, vol.348
, pp. 2271
-
-
Zhang, L.1
Sun, J.2
Kozmin, S.A.3
-
40
-
-
0032486218
-
-
For examples of cationic gold(I)-catalyzed addition of oxygen nucleophiles, see: (a) Teles, J. H, Brode, S, Chabanas, M. Angew. Chem. Int. Ed. 1998, 37, 1415
-
For examples of cationic gold(I)-catalyzed addition of oxygen nucleophiles, see: (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem. Int. Ed. 1998, 37, 1415.
-
-
-
-
41
-
-
0041345498
-
-
(b) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563.
-
(2002)
Angew. Chem. Int. Ed
, vol.41
, pp. 4563
-
-
Mizushima, E.1
Sato, K.2
Hayashi, T.3
Tanaka, M.4
-
42
-
-
28844445185
-
-
(c) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7, 5409.
-
(2005)
Org. Lett
, vol.7
, pp. 5409
-
-
Liu, Y.1
Song, F.2
Song, Z.3
Liu, M.4
Yan, B.5
-
47
-
-
23844478167
-
-
For an example of cationic gold(I)-catalyzed addition of nitrogen nucleophiles, see: Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
-
For an example of cationic gold(I)-catalyzed addition of nitrogen nucleophiles, see: Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
-
-
-
-
48
-
-
34447522292
-
-
We examined the following complexes, but all attempts resulted in failure: AuCl, AuCl3, AuBr3, AuI, Au(CO)Cl, NaAuCl 4·2H2O. It is known that the hydroamination of olefins with tosylamides is accelerated by TfOH,9 so we examined the TfOH-catalyzed (10 mol, hydroamination of 1a with 2 in toluene at 80°C. However, the desired product (allylic amine) was not obtained at all. The allene 1a was decomposed gradually in the presence of TfOH at 80°C, and only 30% of 1a was recovered after 12 h. It is clear that the present hydroamination is catalyzed by the gold complexes
-
9 so we examined the TfOH-catalyzed (10 mol%) hydroamination of 1a with 2 in toluene at 80°C. However, the desired product (allylic amine) was not obtained at all. The allene 1a was decomposed gradually in the presence of TfOH at 80°C, and only 30% of 1a was recovered after 12 h. It is clear that the present hydroamination is catalyzed by the gold complexes.
-
-
-
-
50
-
-
33749036284
-
-
(b) Li, Z.; Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett. 2006, 8, 4175.
-
(2006)
Org. Lett
, vol.8
, pp. 4175
-
-
Li, Z.1
Zhang, J.2
Brouwer, C.3
Yang, C.-G.4
Reich, N.W.5
He, C.6
-
51
-
-
33749000858
-
-
(c) Rosenfeld, D. C.; Shekhar, S.; Takeymiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179.
-
(2006)
Org. Lett
, vol.8
, pp. 4179
-
-
Rosenfeld, D.C.1
Shekhar, S.2
Takeymiya, A.3
Utsunomiya, M.4
Hartwig, J.F.5
-
52
-
-
33747190016
-
-
(d) Lapis, A. A. M.; Neto, B. A. D.; Scholten, J. D.; Nachtigall, F. M.; Eberlin, M. N.; Dupont, J. Tetrahedron Lett. 2006, 47, 6775.
-
(2006)
Tetrahedron Lett
, vol.47
, pp. 6775
-
-
Lapis, A.A.M.1
Neto, B.A.D.2
Scholten, J.D.3
Nachtigall, F.M.4
Eberlin, M.N.5
Dupont, J.6
-
53
-
-
25844453872
-
-
In order to know whether the cationic gold species really participate in the present hydroamination or not, we prepared the cationic gold species, MeCN)AuPPh2o-tolyl, OTf according to the Echavarren's method and used it for the hydroamination of 1a. The product 3a was obtained in 71% yield, indicating that the cationic gold complex was a catalytic species. See: Nieto-Oberhuber, C, López, S, Muñoz, M. P, Cárdenas, D. J, Buñuel, E, Nevado, C, Echavarren, A. M. Angew. Chem. Int. Ed. 2005, 44, 6146
-
+-OTf according to the Echavarren's method and used it for the hydroamination of 1a. The product 3a was obtained in 71% yield, indicating that the cationic gold complex was a catalytic species. See: Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Buñuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2005, 44, 6146.
-
-
-
-
54
-
-
34248227306
-
-
It is reported that manipulation of phosphine ligands enhances the chemical yield in Pd-catalyzed amination of aryl halides. See: Chen, G, Lam, W. H, Fok, W. S, Lee, H. W, Kwong, F. Y. Chem. Asian J. 2007, 2, 306
-
It is reported that manipulation of phosphine ligands enhances the chemical yield in Pd-catalyzed amination of aryl halides. See: Chen, G.; Lam, W. H.; Fok, W. S.; Lee, H. W.; Kwong, F. Y. Chem. Asian J. 2007, 2, 306.
-
-
-
-
55
-
-
37049093591
-
-
Alcock, N. W.; Moore, P.; Lampe, P. A.; Mok, K. F. J. Chem. Soc., Dalton Trans. 1982, 207.
-
(1982)
J. Chem. Soc., Dalton Trans
, pp. 207
-
-
Alcock, N.W.1
Moore, P.2
Lampe, P.A.3
Mok, K.F.4
-
56
-
-
34447526950
-
-
This reaction could not be checked by TLC nor GC-MS, because of its low boiling point ca. 80°C, Thus, reactions were stopped at 24 h
-
This reaction could not be checked by TLC nor GC-MS, because of its low boiling point (ca. 80°C). Thus, reactions were stopped at 24 h.
-
-
-
-
57
-
-
34447510080
-
-
General Procedure for Preparation of Catalysts These complexes were prepared following a literature procedure, and characterized by comparison of the NMR data with literature values, except for 4c, 4d, and 4h. A solution of SMe2 (1.2 mL, 16 mmol) in MeOH (6 mL) was added to a solution of NaAuCl4-2H2O (2.19 g, 5.5 mmol) in MeOH (30 mL) with minimum light exposure. The white precipitate was recovered by filtration, washed (MeOH, Et2O, and pentane, and dried under vacuum. Then, AuCl(SMe2, was obtained in 99% yield (1.60 g) and used without further purification. 1H NMR (300 MHz, CDCl3, δ, 2.73 (s, 6 H, A solution of diphenyl(o-tolyl)phosphine (0.589 g, 2 mmol) in acetone (50 mL) was added to a solution of [AuCl(SMe2, 0.553 g) in acetone 150 mL, The mixture was stirred for 2 h and concentrated, recrystallized from toluene, and dried under vacuum; [AuClPPh
-
4)](4h) was obtained in 83% (0.83 g). See: Brandys, M.-C.; Jennings, M. C.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans. 2000, 4601.
-
-
-
-
58
-
-
34447514539
-
-
ClAuPPh2(o-MeOC6H4)(4c, 1H NMR (600 MHz, CDCl3, δ, 3.71 (3 H, s, 6.82 (1 H, ddd, J, 13.2, 7.8, 1.8 Hz, 6.97 (1 H, dd, J, 8.4, 5.1 Hz, 6.93-6.97 (1 H, m, 7.42-7.47 (4 H, m, 7.49-7.57 (7 H, m, 13C NMR (75.5 Hz, CDCl3, δ, 55.9, 111.6 [d, J( 13C-31P, 4.1 Hz, 116.4 [d, J( 13C-31P, 57.0 Hz, 121.1 [d, J( 13C-31P, 10.8 Hz, 128.4, 128.9 [d, J( 13C-31P, 11.6 Hz, 131.5 [d, J( 13C-31P, 2.5 Hz, 133.9 [d, J( 13C-31P, 1.7 Hz, 134.0 [d, J( 13C-31P, 14.9 Hz, 134.2 [d, J( 13C-31P, 7.5 Hz, 160.7 [d, J( 13C-31P, 5.0 Hz, 31P NMR(121.5 Hz, CDCl 3, δ, 25.0. IR neat, AT
-
4.
-
-
-
-
59
-
-
34447560237
-
-
General Procedure for Hydroamination of Allenes To a suspension of [AuClPPh2(o-tolyl, 25.4 mg, 0.05 mmol) in toluene (0.5 mL) was added morpholine (43.7 mg, 0.502 mmol, To the reaction mixture was added 4-methylphenylallene (1a, 79.3 mg, 0.6 mmol) and the resulting mixture was stirred at 80°C under an Ar atmosphere. The reaction mixture was colorless and heterogeneous at the beginning, but it turned yellow to brown as the reaction progressed. After the reaction was completed (12 h, the reaction mixture was filtered through short Florisil® gel pad with EtOAc as an eluent and the resulting filtered solution was concentrated. The product was purified by column chromatography (basic silica gel, hexane-EtOAc, 100:1 to 10:1) to give 3a in 83% yield 90.8 mg
-
2(o-tolyl)] (25.4 mg, 0.05 mmol) in toluene (0.5 mL) was added morpholine (43.7 mg, 0.502 mmol). To the reaction mixture was added 4-methylphenylallene (1a, 79.3 mg, 0.6 mmol) and the resulting mixture was stirred at 80°C under an Ar atmosphere. The reaction mixture was colorless and heterogeneous at the beginning, but it turned yellow to brown as the reaction progressed. After the reaction was completed (12 h), the reaction mixture was filtered through short Florisil® gel pad with EtOAc as an eluent and the resulting filtered solution was concentrated. The product was purified by column chromatography (basic silica gel, hexane-EtOAc = 100:1 to 10:1) to give 3a in 83% yield (90.8 mg).
-
-
-
-
60
-
-
34447529548
-
-
E)-4-(3-p-Tolylallyl)morpholine(3a, 1H NMR (300 MHz, CDCl3, δ, 2.31 (3 H, s, 2.40-2.59 (4 H, m, 3.12 (2 H, dd, J, 6.8, 1.3 Hz, 3.72 (4 H, dd, J, 4.7, 4.7 Hz, 6.18 (1 H, dt, J, 15.8, 6.8 Hz, 6.48 (1 H, d, J, 15.8 Hz, 7.10 (2 H, d, J, 8.1 Hz, 7.25 (2 H, d, J, 8.1 Hz, 13C NMR (75.5 Hz, CDCl3, δ, 21.2, 53.7, 61.5, 67.0, 124.9, 126.2, 129.3, 133.3, 134.0, 137.4. IR (neat, 1712, 1512, 1452, 1116, 1006, 968, 869, 809, 776 cm-1. HRMS (EI, m/z calcd for C14H 19NO [M, 217.1462; found: 217.1464. 4-Cinnamylmorpholine (3b, 1H NMR (300 MHz, CDCl3, δ, 2.45 (4 H, dd, J, 4.6, 4.6 Hz, 3.10 (2 H, dd, J, 6.8, 1.3 Hz, 3.68 (4 H, dd, J, 4.6, 4.6 Hz, 6.19 (1 H, dt, J, 15.8, 6.8 Hz, 6.47 (1 H, d, J, 15.8 Hz, 7.11-7.38 5 H, m, 13
-
3): δ = 2.05 (E- and Z-3 H, s), 2.25-2.42 (Z-4 H, m), 2.44-2.60 (E-4 H, m), 2.91 (Z-2 H, d, J = 6.8 Hz)
-
-
-
|