-
1
-
-
0344829399
-
-
J. S. Reichert, J. H. Bailey, J. A. Niewland, J. Am. Chem. Soc. 1923, 45, 1553.
-
(1923)
J. Am. Chem. Soc.
, vol.45
, pp. 1553
-
-
Reichert, J.S.1
Bailey, J.H.2
Niewland, J.A.3
-
3
-
-
0345692293
-
-
b) D. B. Killian, G. F. Hennion, J. A. Niewland, ibid. 1934, 56, 1384;
-
(1934)
J. Am. Chem. Soc.
, vol.56
, pp. 1384
-
-
Killian, D.B.1
Hennion, G.F.2
Niewland, J.A.3
-
5
-
-
0345260634
-
-
d) D. B. Killian, G. F. Hennion, J. A. Niewland, ibid. 1936, 58, 1658;
-
(1936)
J. Am. Chem. Soc.
, vol.58
, pp. 1658
-
-
Killian, D.B.1
Hennion, G.F.2
Niewland, J.A.3
-
9
-
-
85082939317
-
-
h) under basic conditions the reaction becomes stoichiometric in mercury, and enol ethers are produced instead of acetals: J. Barluenga, F. Aznar, M. Bayod, Synthesis 1988, 144.
-
(1988)
Synthesis
, pp. 144
-
-
Barluenga, J.1
Aznar, F.2
Bayod, M.3
-
11
-
-
0000672248
-
-
b) P. W. Jennings, J. W. Hartman, W. C. Hiscox, Inorg. Chim. Acta 1994, 222, 317;
-
(1994)
Inorg. Chim. Acta
, vol.222
, pp. 317
-
-
Jennings, P.W.1
Hartman, J.W.2
Hiscox, W.C.3
-
12
-
-
0000372120
-
-
and references therein
-
c) Y. Kataoka, O. Matsumoto, K. Tani, Organometallics 1996, 15, 5246, and references therein.
-
(1996)
Organometallics
, vol.15
, pp. 5246
-
-
Kataoka, Y.1
Matsumoto, O.2
Tani, K.3
-
15
-
-
33845376099
-
-
a) Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405;
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 6405
-
-
Ito, Y.1
Sawamura, M.2
Hayashi, T.3
-
16
-
-
0002913891
-
-
b) Y. Fukuda, K. Utimoto, H. Nozaki, Heterocycles 1987, 25, 297;
-
(1987)
Heterocycles
, vol.25
, pp. 297
-
-
Fukuda, Y.1
Utimoto, K.2
Nozaki, H.3
-
18
-
-
0344829394
-
-
d) S. Komiya, T. Sone, Y. Usui, M. Hirano, A. Fukuoka, Gold Bull. (London) 1996, 29, 131;
-
(1996)
Gold Bull. (London)
, vol.29
, pp. 131
-
-
Komiya, S.1
Sone, T.2
Usui, Y.3
Hirano, M.4
Fukuoka, A.5
-
19
-
-
0000722557
-
-
e) Q. Xu, Y. Imamura, M. Fujiwara, Y. Souma, J. Org. Chem. 1997, 62, 1594.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 1594
-
-
Xu, Q.1
Imamura, Y.2
Fujiwara, M.3
Souma, Y.4
-
21
-
-
0345692291
-
-
WO-A1 9721648
-
J. H. Teles, M. Schulz (BASFAG), WO-A1 9721648, 1997 [Chem. Abstr. 1997, 127, 121 499].
-
(1997)
-
-
Teles, J.H.1
Schulz, M.2
-
22
-
-
11144335656
-
-
J. H. Teles, M. Schulz (BASFAG), WO-A1 9721648, 1997 [Chem. Abstr. 1997, 127, 121 499].
-
(1997)
Chem. Abstr.
, vol.127
, pp. 121499
-
-
-
23
-
-
0344829393
-
-
note
-
2.
-
-
-
-
24
-
-
0345692289
-
-
note
-
Under the reaction conditions the acetal is in rapid equilibrium with the corresponding enol ethers (four isomers). Enol ethers can become the major products in the presence of excess alkyne.
-
-
-
-
25
-
-
0027764360
-
-
Mercury-catalyzed addition of water to 3 leads to a 2:1 mixture of the two isometric ketones 4-methyl-2-pentanone and 2-methyl-3-pentanone; J. W. Hartman, W. C. Hiscox, P. W. Jennings, J. Org. Chem. 1993, 58, 7613.
-
(1993)
J. Org. Chem.
, vol.58
, pp. 7613
-
-
Hartman, J.W.1
Hiscox, W.C.2
Jennings, P.W.3
-
27
-
-
0344397725
-
-
note
-
-4 mol% catalyst.
-
-
-
-
29
-
-
0344397726
-
-
note
-
These catalysts are also able to catalyze the addition of water and carboxylic acids to alkynes. A preliminary report of this work appears in reference [7].
-
-
-
-
30
-
-
0001520142
-
-
3. For a typical procedure, see L. Malatesta, L. Naldini, G. Simonetta, F. Cariati, Coord. Chem. Rev. 1966, 1, 255.
-
(1966)
Coord. Chem. Rev.
, vol.1
, pp. 255
-
-
Malatesta, L.1
Naldini, L.2
Simonetta, G.3
Cariati, F.4
-
31
-
-
0345260628
-
-
note
-
Nucleophilic carbenes such as 1,3,4-triphenyl-4.5-dihydro-1.2,4-triazol-(1H)-ylidene are also suitable ligands. We prepared the corresponding gold(I) chloride complex by treating the isolated carbene with dimethylsulfidegold(I) chloride. This carbenegold(I) complex proved to be 3.5 times more active than triphenylphosphanegold(I) chloride. Unfortunately we did not succeed in the preparation of either the carbenegold nitrate or the carbenegold methyl complexes.
-
-
-
-
32
-
-
0345260627
-
-
note
-
4 is quickly hydrolyzed to trimethylborate under the reaction conditions.
-
-
-
-
33
-
-
0344397723
-
-
note
-
2.
-
-
-
-
34
-
-
0001272219
-
-
(Eds.: E. Clementi, G. Corongiu) STEF, Cagliari
-
All ab initio calculations were performed with the TURBOMOLE program package. For an overview of TURBOMOLE, see R. Ahlrichs, M. von Arnim in Methods and Techniques in Computational Chemistry: METECC-95 (Eds.: E. Clementi, G. Corongiu) STEF, Cagliari, 1995, P. 509-554. Geometries were calculated at the RI-DFT level (K. Eichkorn, O. Treutler, H. Ihm, M. Häser, R. Ahlrichs; Chem. Phys. Lett. 1995, 242, 652) with the Becke-Perdew functional and the TURBOMOLE SV(P) basis sets (K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119). For gold, the 60-mwb relativistic pseudopotential was utilized (D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123). Energies were calculated at the MP2 level with TZVP basis sets through the recently developed RI-MP2 implementation (F. Weigend, M. Häser, Theor. Chem. Acc. 1997, 97, 331).
-
(1995)
Methods and Techniques in Computational Chemistry: METECC-95
, pp. 509-554
-
-
Ahlrichs, R.1
Von Arnim, M.2
-
35
-
-
3743098842
-
-
All ab initio calculations were performed with the TURBOMOLE program package. For an overview of TURBOMOLE, see R. Ahlrichs, M. von Arnim in Methods and Techniques in Computational Chemistry: METECC-95 (Eds.: E. Clementi, G. Corongiu) STEF, Cagliari, 1995, P. 509-554. Geometries were calculated at the RI-DFT level (K. Eichkorn, O. Treutler, H. Ihm, M. Häser, R. Ahlrichs; Chem. Phys. Lett. 1995, 242, 652) with the Becke-Perdew functional and the TURBOMOLE SV(P) basis sets (K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119). For gold, the 60-mwb relativistic pseudopotential was utilized (D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123). Energies were calculated at the MP2 level with TZVP basis sets through the recently developed RI-MP2 implementation (F. Weigend, M. Häser, Theor. Chem. Acc. 1997, 97, 331).
-
(1995)
Chem. Phys. Lett.
, vol.242
, pp. 652
-
-
Eichkorn, K.1
Treutler, O.2
Ihm, H.3
Häser, M.4
Ahlrichs, R.5
-
36
-
-
0031285825
-
-
All ab initio calculations were performed with the TURBOMOLE program package. For an overview of TURBOMOLE, see R. Ahlrichs, M. von Arnim in Methods and Techniques in Computational Chemistry: METECC-95 (Eds.: E. Clementi, G. Corongiu) STEF, Cagliari, 1995, P. 509-554. Geometries were calculated at the RI-DFT level (K. Eichkorn, O. Treutler, H. Ihm, M. Häser, R. Ahlrichs; Chem. Phys. Lett. 1995, 242, 652) with the Becke-Perdew functional and the TURBOMOLE SV(P) basis sets (K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119). For gold, the 60-mwb relativistic pseudopotential was utilized (D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123). Energies were calculated at the MP2 level with TZVP basis sets through the recently developed RI-MP2 implementation (F. Weigend, M. Häser, Theor. Chem. Acc. 1997, 97, 331).
-
(1997)
Theor. Chem. Acc.
, vol.97
, pp. 119
-
-
Eichkorn, K.1
Weigend, F.2
Treutler, O.3
Ahlrichs, R.4
-
37
-
-
11744322674
-
-
All ab initio calculations were performed with the TURBOMOLE program package. For an overview of TURBOMOLE, see R. Ahlrichs, M. von Arnim in Methods and Techniques in Computational Chemistry: METECC-95 (Eds.: E. Clementi, G. Corongiu) STEF, Cagliari, 1995, P. 509-554. Geometries were calculated at the RI-DFT level (K. Eichkorn, O. Treutler, H. Ihm, M. Häser, R. Ahlrichs; Chem. Phys. Lett. 1995, 242, 652) with the Becke-Perdew functional and the TURBOMOLE SV(P) basis sets (K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119). For gold, the 60-mwb relativistic pseudopotential was utilized (D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123). Energies were calculated at the MP2 level with TZVP basis sets through the recently developed RI-MP2 implementation (F. Weigend, M. Häser, Theor. Chem. Acc. 1997, 97, 331).
-
(1990)
Theor. Chim. Acta
, vol.77
, pp. 123
-
-
Andrae, D.1
Haeussermann, U.2
Dolg, M.3
Stoll, H.4
Preuss, H.5
-
38
-
-
0031285839
-
-
All ab initio calculations were performed with the TURBOMOLE program package. For an overview of TURBOMOLE, see R. Ahlrichs, M. von Arnim in Methods and Techniques in Computational Chemistry: METECC-95 (Eds.: E. Clementi, G. Corongiu) STEF, Cagliari, 1995, P. 509-554. Geometries were calculated at the RI-DFT level (K. Eichkorn, O. Treutler, H. Ihm, M. Häser, R. Ahlrichs; Chem. Phys. Lett. 1995, 242, 652) with the Becke-Perdew functional and the TURBOMOLE SV(P) basis sets (K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119). For gold, the 60-mwb relativistic pseudopotential was utilized (D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123). Energies were calculated at the MP2 level with TZVP basis sets through the recently developed RI-MP2 implementation (F. Weigend, M. Häser, Theor. Chem. Acc. 1997, 97, 331).
-
(1997)
Theor. Chem. Acc.
, vol.97
, pp. 331
-
-
Weigend, F.1
Häser, M.2
-
39
-
-
0345260625
-
-
note
-
2 at -40°C).
-
-
-
-
40
-
-
0345692288
-
-
note
-
Coordination of methanol with 18 to form the T-shaped complex 19 disturbs the structure only slightly. The angle between phosphorus, gold, and the center of the triple bond changes from 179° in 18 to 175° in 19. The Au-O bond in 19 is very long (3.7 Å compared to 2.1 Å for a Au-O single bond), and the P-Au-O angle is 83°.
-
-
-
-
42
-
-
0344829389
-
-
note
-
The stereochemistry was determined by X-ray crystallography. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-100957. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
-
-
-
|