-
1
-
-
0000273676
-
-
Hille, R. Chem. Rev. 1996, 96, 2757.
-
(1996)
Chem. Rev
, vol.96
, pp. 2757
-
-
Hille, R.1
-
2
-
-
9444219600
-
-
Huber, R.; Hof, P.; Duarte, R. O.; Moura, J. J. G.; Moura, I.; Liu, M.-Y.; LeGall, J.; Hille, R.; Margarida, A.; Romao, M. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8846.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A
, vol.93
, pp. 8846
-
-
Huber, R.1
Hof, P.2
Duarte, R.O.3
Moura, J.J.G.4
Moura, I.5
Liu, M.-Y.6
LeGall, J.7
Hille, R.8
Margarida, A.9
Romao, M.10
-
4
-
-
0034718556
-
-
Enroth, C.; Eger, B. T.; Okamoto, K.; Nishino, T;, Nishino, T;, Pai, E. F. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10723.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A
, vol.97
, pp. 10723
-
-
Enroth, C.1
Eger, B.T.2
Okamoto, K.3
Nishino, T.4
Nishino, T.5
Pai, E.F.6
-
6
-
-
2542612969
-
-
Okamoto, K.; Matsumoto, K.; Hille, R.; Eger, B. T.; Pai, E. F.; Nishino, T. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 7931.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A
, vol.101
, pp. 7931
-
-
Okamoto, K.1
Matsumoto, K.2
Hille, R.3
Eger, B.T.4
Pai, E.F.5
Nishino, T.6
-
7
-
-
16244402285
-
-
Doonan, C. J.; Stockert, A.; Hille, R.; George, G. N. J. Am. Chem. Soc. 2005, 127, 4518.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 4518
-
-
Doonan, C.J.1
Stockert, A.2
Hille, R.3
George, G.N.4
-
8
-
-
0001136357
-
-
Voityuk, A. A.; Albert, K.; Romao, M. J.; Huber, R.; Rösch, N. Inorg. Chem. 1998, 37, 176.
-
(1998)
Inorg. Chem
, vol.37
, pp. 176
-
-
Voityuk, A.A.1
Albert, K.2
Romao, M.J.3
Huber, R.4
Rösch, N.5
-
11
-
-
4644366935
-
-
Leimkuhler, S.; Stockert, A. L.; Igarashi, K.; Nishino, T.; Hille, R. J. Biol. Chem. 2004, 279, 40437.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 40437
-
-
Leimkuhler, S.1
Stockert, A.L.2
Igarashi, K.3
Nishino, T.4
Hille, R.5
-
12
-
-
14544288590
-
-
Hemann, C.; Ilich, P.; Stockert, A. L.; Choi, E.-Y.; Hille, R. J. Phys. Chem. B 2005, 109, 3023.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 3023
-
-
Hemann, C.1
Ilich, P.2
Stockert, A.L.3
Choi, E.-Y.4
Hille, R.5
-
13
-
-
34447124744
-
-
Gaussian, Inc, Wallingford, CT
-
Pople, J. A.; et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
-
(2004)
Gaussian 03, revision
, Issue.C.02
-
-
Pople, J.A.1
-
14
-
-
0011530224
-
-
and references therein
-
Reed, A. E.; Curtis, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 849 and references therein.
-
(1988)
Chem. Rev
, vol.88
, pp. 849
-
-
Reed, A.E.1
Curtis, L.A.2
Weinhold, F.3
-
17
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
20
-
-
43949164303
-
-
Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, P.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
-
(1993)
Chem. Phys. Lett
, vol.208
, pp. 111
-
-
Ehlers, A.W.1
Böhme, M.2
Dapprich, S.3
Gobbi, A.4
Höllwarth, A.5
Jonas, V.6
Köhler, K.F.7
Stegmann, P.8
Veldkamp, A.9
Frenking, G.10
-
21
-
-
0347170005
-
-
(a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
-
(1972)
J. Chem. Phys
, vol.56
, pp. 2257
-
-
Hehre, W.J.1
Ditchfield, R.2
Pople, J.A.3
-
22
-
-
33645949559
-
-
(b) Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
-
(1982)
J. Chem. Phys
, vol.77
, pp. 3654
-
-
Francl, M.M.1
Petro, W.J.2
Hehre, W.J.3
Binkley, J.S.4
Gordon, M.S.5
DeFrees, D.J.6
Pople, J.A.7
-
24
-
-
84986468715
-
-
(d) Clark, T.; Chandrasekhar, J.; Spitmagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294.
-
(1983)
J. Comput. Chem
, vol.4
, pp. 294
-
-
Clark, T.1
Chandrasekhar, J.2
Spitmagel, G.W.3
Schleyer, P.V.R.4
-
25
-
-
36549091139
-
-
(e) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
-
(1984)
J. Chem. Phys
, vol.80
, pp. 3265
-
-
Frisch, M.J.1
Pople, J.A.2
Binkley, J.S.3
-
26
-
-
36849115659
-
-
Ditchfiled, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
-
(1971)
J. Chem. Phys
, vol.54
, pp. 724
-
-
Ditchfiled, R.1
Hehre, W.J.2
Pople, J.A.3
-
27
-
-
26844534384
-
-
Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
-
(1980)
J. Chem. Phys
, vol.72
, pp. 650
-
-
Krishnan, R.1
Binkley, J.S.2
Seeger, R.3
Pople, J.A.4
-
29
-
-
43949164796
-
-
Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237.
-
(1993)
Chem. Phys. Lett
, vol.208
, pp. 237
-
-
Höllwarth, A.1
Böhme, M.2
Dapprich, S.3
Ehlers, A.W.4
Gobbi, A.5
Jonas, V.6
Köhler, K.F.7
Stegmann, R.8
Veldkamp, A.9
Frenking, G.10
-
30
-
-
34447137111
-
-
6 The deprotonation of the Mo active center changes the anion form of Glu730 to the protonated neutral form. This means that the proton does not exist around the Mo active center. It is likely that the neutral carboxylic acid little influences the reaction of the active site when it is about 4 Å distant from the active site.
-
6 The deprotonation of the Mo active center changes the anion form of Glu730 to the protonated neutral form. This means that the proton does not exist around the Mo active center. It is likely that the neutral carboxylic acid little influences the reaction of the active site when it is about 4 Å distant from the active site.
-
-
-
-
31
-
-
34447133801
-
-
The exothermicities of eqs 3 and 4 are evaluated to be 11.3 and 4.2 kcal/mol, respectively, with the PCM method, where the ε value of 4.0 was employed because this value is often used to mimic the atmosphere of protein in PCM calculations. These results indicate that eq 2 is still much more exothermic than eq 3, though the difference in exothermicity between eqs 2 and 3 considerably decreases in the PCM calculation. Thus, our conclusion does not change in the PCM calculation
-
(a) The exothermicities of eqs 3 and 4 are evaluated to be 11.3 and 4.2 kcal/mol, respectively, with the PCM method, where the ε value of 4.0 was employed because this value is often used to mimic the atmosphere of protein in PCM calculations. These results indicate that eq 2 is still much more exothermic than eq 3, though the difference in exothermicity between eqs 2 and 3 considerably decreases in the PCM calculation. Thus, our conclusion does not change in the PCM calculation.
-
-
-
-
32
-
-
34447124743
-
-
The significant decrease in the exothermicity of eq 2 by the PCM calculation is understood by considering that the solvation induces a significantly larger stabilization energy of the product of eq 3 than that of eq 2 because the anionic O atom is exposed to solvent in the product of eq 3 but covered with the substrate in the product of eq 2.
-
(b) The significant decrease in the exothermicity of eq 2 by the PCM calculation is understood by considering that the solvation induces a significantly larger stabilization energy of the product of eq 3 than that of eq 2 because the anionic O atom is exposed to solvent in the product of eq 3 but covered with the substrate in the product of eq 2.
-
-
-
-
33
-
-
34447124109
-
-
Careful geometry optimization starting from TSc leads to PREc and PRODc.
-
Careful geometry optimization starting from TSc leads to PREc and PRODc.
-
-
-
-
34
-
-
34447127827
-
-
2-.
-
2-.
-
-
-
|