-
2
-
-
34250724621
-
Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings
-
Bauschke H.H. Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings. Proceedings of the American Mathematical Society 135 1 (2007) 135-139
-
(2007)
Proceedings of the American Mathematical Society
, vol.135
, Issue.1
, pp. 135-139
-
-
Bauschke, H.H.1
-
3
-
-
33846522955
-
Fitzpatrick functions: Inequalities, examples and remarks on a problem by S. Fitzpatrick
-
Bauschke H.H., McLaren D.A., and Sendov H.S. Fitzpatrick functions: Inequalities, examples and remarks on a problem by S. Fitzpatrick. Journal of Convex Analysis 13 3-4 (2006)
-
(2006)
Journal of Convex Analysis
, vol.13
, Issue.3-4
-
-
Bauschke, H.H.1
McLaren, D.A.2
Sendov, H.S.3
-
4
-
-
33749528052
-
Maximal monotonicity via convex analysis
-
Borwein J.M. Maximal monotonicity via convex analysis. Journal of Convex Analysis 13 3-4 (2006)
-
(2006)
Journal of Convex Analysis
, vol.13
, Issue.3-4
-
-
Borwein, J.M.1
-
5
-
-
33645961296
-
A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces
-
Boţ R.I., and Wanka G. A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Analysis: Theory, Methods & Applications 64 12 (2006) 2787-2804
-
(2006)
Nonlinear Analysis: Theory, Methods & Applications
, vol.64
, Issue.12
, pp. 2787-2804
-
-
Boţ, R.I.1
Wanka, G.2
-
6
-
-
36248962713
-
-
R.I. Boţ, S.-M. Grad, G. Wanka, Maximal monotonicity for the precomposition with a linear operator, SIAM Journal on Optimization (2005) (in press)
-
-
-
-
7
-
-
34250782930
-
-
R.I. Boţ, S.-M. Grad, G. Wanka, Weaker constraint qualifications in maximal monotonicity, Numerical Functional Analysis and Optimization (2005) (in press)
-
-
-
-
8
-
-
34250511959
-
Nonlinear maximal monotone operators in Banach spaces
-
Browder F.E. Nonlinear maximal monotone operators in Banach spaces. Mathematische Annalen 175 (1968) 89-113
-
(1968)
Mathematische Annalen
, vol.175
, pp. 89-113
-
-
Browder, F.E.1
-
10
-
-
0036034569
-
Maximal monotone operators, convex functions and a special family of enlargements
-
Burachik R.S., and Svaiter B.F. Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Analysis 10 (2002) 297-316
-
(2002)
Set-Valued Analysis
, vol.10
, pp. 297-316
-
-
Burachik, R.S.1
Svaiter, B.F.2
-
11
-
-
0006562511
-
On the sum of monotone operators
-
Chu L.-J. On the sum of monotone operators. The Michigan Mathematical Journal 43 2 (1996) 273-289
-
(1996)
The Michigan Mathematical Journal
, vol.43
, Issue.2
, pp. 273-289
-
-
Chu, L.-J.1
-
12
-
-
34250758349
-
-
S. Fitzpatrick, Representing monotone operators by convex functions, in: Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), in: Proceedings of the Centre for Mathematical Analysis, vol. 20, Australian National University, Canberra, 1988, pp. 59-65
-
-
-
-
13
-
-
0010166747
-
A representation of maximal monotone operators by saddle functions
-
Krauss E. A representation of maximal monotone operators by saddle functions. Revue Roumaine de Mathématiques Pures et Appliquées 30 (1985) 823-836
-
(1985)
Revue Roumaine de Mathématiques Pures et Appliquées
, vol.30
, pp. 823-836
-
-
Krauss, E.1
-
15
-
-
0034403146
-
Dualization of generalized equations of maximal monotone type
-
Pennanen T. Dualization of generalized equations of maximal monotone type. SIAM Journal on Optimization 10 3 (2000) 809-835
-
(2000)
SIAM Journal on Optimization
, vol.10
, Issue.3
, pp. 809-835
-
-
Pennanen, T.1
-
16
-
-
4243114710
-
Is convexity useful for the study of monotonicity?
-
Agarwal R.P., and O'Regan D. (Eds), Kluwer, Dordrecht
-
Penot J.-P. Is convexity useful for the study of monotonicity?. In: Agarwal R.P., and O'Regan D. (Eds). Nonlinear Analysis and Applications (2003), Kluwer, Dordrecht 807-822
-
(2003)
Nonlinear Analysis and Applications
, pp. 807-822
-
-
Penot, J.-P.1
-
17
-
-
4243129234
-
The relevance of convex analysis for the study of monotonicity
-
Penot J.-P. The relevance of convex analysis for the study of monotonicity. Nonlinear Analysis: Theory, Methods & Applications 58 7-8 (2004) 855-871
-
(2004)
Nonlinear Analysis: Theory, Methods & Applications
, vol.58
, Issue.7-8
, pp. 855-871
-
-
Penot, J.-P.1
-
18
-
-
2342443295
-
A representation of maximal monotone operators by closed convex functions and its impact on calculus rules
-
Penot J.-P. A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. Comptes Rendus Mathmatique. Acadmie des Sciences. Paris 338 11 (2004) 853-858
-
(2004)
Comptes Rendus Mathmatique. Acadmie des Sciences. Paris
, vol.338
, Issue.11
, pp. 853-858
-
-
Penot, J.-P.1
-
20
-
-
0006554342
-
Lecture notes in maximal monotone operators
-
Phelps R.R. Lecture notes in maximal monotone operators. Extracta Mathematicae 12 3 (1997) 193-230
-
(1997)
Extracta Mathematicae
, vol.12
, Issue.3
, pp. 193-230
-
-
Phelps, R.R.1
-
21
-
-
84972582929
-
On the maximal monotonicity of subdiferential mappings
-
Rockafellar R.T. On the maximal monotonicity of subdiferential mappings. Pacific Journal of Mathematics 33 1 (1970) 209-216
-
(1970)
Pacific Journal of Mathematics
, vol.33
, Issue.1
, pp. 209-216
-
-
Rockafellar, R.T.1
-
24
-
-
33745936299
-
Fenchel duality, Fitzpatrick functions and maximal monotonicity
-
Simons S., and Zǎlinescu C. Fenchel duality, Fitzpatrick functions and maximal monotonicity. Journal of Nonlinear and Convex Analysis 6 1 (2005) 1-22
-
(2005)
Journal of Nonlinear and Convex Analysis
, vol.6
, Issue.1
, pp. 1-22
-
-
Simons, S.1
Zǎlinescu, C.2
-
25
-
-
85174220300
-
Regular maximal monotone operators and the sum theorem
-
Verona A., and Verona M.E. Regular maximal monotone operators and the sum theorem. Journal of Convex Analysis 7 1 (2000) 115-128
-
(2000)
Journal of Convex Analysis
, vol.7
, Issue.1
, pp. 115-128
-
-
Verona, A.1
Verona, M.E.2
-
26
-
-
33745961812
-
A new proof of the maximal monotonicity of the sum using the Fitzpatrick function
-
Variational Analysis and Applications. Giannessi F., and Maugeri A. (Eds), Kluwer
-
Zǎlinescu C. A new proof of the maximal monotonicity of the sum using the Fitzpatrick function. In: Giannessi F., and Maugeri A. (Eds). Variational Analysis and Applications. Nonconvex Optimization and its Applications vol. 79 (2005), Kluwer 1159-1172
-
(2005)
Nonconvex Optimization and its Applications
, vol.79
, pp. 1159-1172
-
-
Zǎlinescu, C.1
-
27
-
-
33846533684
-
A new convexity property of monotone operators
-
Zǎlinescu C. A new convexity property of monotone operators. Journal of Convex Analysis 13 3-4 (2006)
-
(2006)
Journal of Convex Analysis
, vol.13
, Issue.3-4
-
-
Zǎlinescu, C.1
|