메뉴 건너뛰기




Volumn 67, Issue 8, 2007, Pages 2390-2402

A new condition for maximal monotonicity via representative functions

Author keywords

Fitzpatrick function; Maximal monotone operator; Representative function; Subdifferential

Indexed keywords

BOUNDARY CONDITIONS; CONFORMAL MAPPING; MATHEMATICAL OPERATORS;

EID: 34250743164     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2006.09.006     Document Type: Article
Times cited : (15)

References (28)
  • 1
    • 25644449072 scopus 로고    scopus 로고
    • Somme ponctuelle d'opérateurs maximaux monotones
    • Attouch H., Riahi H., and Théra M. Somme ponctuelle d'opérateurs maximaux monotones. Serdica-Mathematical Journal 22 3 (1996) 165-190
    • (1996) Serdica-Mathematical Journal , vol.22 , Issue.3 , pp. 165-190
    • Attouch, H.1    Riahi, H.2    Théra, M.3
  • 2
    • 34250724621 scopus 로고    scopus 로고
    • Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings
    • Bauschke H.H. Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings. Proceedings of the American Mathematical Society 135 1 (2007) 135-139
    • (2007) Proceedings of the American Mathematical Society , vol.135 , Issue.1 , pp. 135-139
    • Bauschke, H.H.1
  • 3
    • 33846522955 scopus 로고    scopus 로고
    • Fitzpatrick functions: Inequalities, examples and remarks on a problem by S. Fitzpatrick
    • Bauschke H.H., McLaren D.A., and Sendov H.S. Fitzpatrick functions: Inequalities, examples and remarks on a problem by S. Fitzpatrick. Journal of Convex Analysis 13 3-4 (2006)
    • (2006) Journal of Convex Analysis , vol.13 , Issue.3-4
    • Bauschke, H.H.1    McLaren, D.A.2    Sendov, H.S.3
  • 4
    • 33749528052 scopus 로고    scopus 로고
    • Maximal monotonicity via convex analysis
    • Borwein J.M. Maximal monotonicity via convex analysis. Journal of Convex Analysis 13 3-4 (2006)
    • (2006) Journal of Convex Analysis , vol.13 , Issue.3-4
    • Borwein, J.M.1
  • 5
    • 33645961296 scopus 로고    scopus 로고
    • A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces
    • Boţ R.I., and Wanka G. A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Analysis: Theory, Methods & Applications 64 12 (2006) 2787-2804
    • (2006) Nonlinear Analysis: Theory, Methods & Applications , vol.64 , Issue.12 , pp. 2787-2804
    • Boţ, R.I.1    Wanka, G.2
  • 6
    • 36248962713 scopus 로고    scopus 로고
    • R.I. Boţ, S.-M. Grad, G. Wanka, Maximal monotonicity for the precomposition with a linear operator, SIAM Journal on Optimization (2005) (in press)
  • 7
    • 34250782930 scopus 로고    scopus 로고
    • R.I. Boţ, S.-M. Grad, G. Wanka, Weaker constraint qualifications in maximal monotonicity, Numerical Functional Analysis and Optimization (2005) (in press)
  • 8
    • 34250511959 scopus 로고
    • Nonlinear maximal monotone operators in Banach spaces
    • Browder F.E. Nonlinear maximal monotone operators in Banach spaces. Mathematische Annalen 175 (1968) 89-113
    • (1968) Mathematische Annalen , vol.175 , pp. 89-113
    • Browder, F.E.1
  • 10
    • 0036034569 scopus 로고    scopus 로고
    • Maximal monotone operators, convex functions and a special family of enlargements
    • Burachik R.S., and Svaiter B.F. Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Analysis 10 (2002) 297-316
    • (2002) Set-Valued Analysis , vol.10 , pp. 297-316
    • Burachik, R.S.1    Svaiter, B.F.2
  • 11
    • 0006562511 scopus 로고    scopus 로고
    • On the sum of monotone operators
    • Chu L.-J. On the sum of monotone operators. The Michigan Mathematical Journal 43 2 (1996) 273-289
    • (1996) The Michigan Mathematical Journal , vol.43 , Issue.2 , pp. 273-289
    • Chu, L.-J.1
  • 12
    • 34250758349 scopus 로고    scopus 로고
    • S. Fitzpatrick, Representing monotone operators by convex functions, in: Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), in: Proceedings of the Centre for Mathematical Analysis, vol. 20, Australian National University, Canberra, 1988, pp. 59-65
  • 13
    • 0010166747 scopus 로고
    • A representation of maximal monotone operators by saddle functions
    • Krauss E. A representation of maximal monotone operators by saddle functions. Revue Roumaine de Mathématiques Pures et Appliquées 30 (1985) 823-836
    • (1985) Revue Roumaine de Mathématiques Pures et Appliquées , vol.30 , pp. 823-836
    • Krauss, E.1
  • 15
    • 0034403146 scopus 로고    scopus 로고
    • Dualization of generalized equations of maximal monotone type
    • Pennanen T. Dualization of generalized equations of maximal monotone type. SIAM Journal on Optimization 10 3 (2000) 809-835
    • (2000) SIAM Journal on Optimization , vol.10 , Issue.3 , pp. 809-835
    • Pennanen, T.1
  • 16
    • 4243114710 scopus 로고    scopus 로고
    • Is convexity useful for the study of monotonicity?
    • Agarwal R.P., and O'Regan D. (Eds), Kluwer, Dordrecht
    • Penot J.-P. Is convexity useful for the study of monotonicity?. In: Agarwal R.P., and O'Regan D. (Eds). Nonlinear Analysis and Applications (2003), Kluwer, Dordrecht 807-822
    • (2003) Nonlinear Analysis and Applications , pp. 807-822
    • Penot, J.-P.1
  • 17
    • 4243129234 scopus 로고    scopus 로고
    • The relevance of convex analysis for the study of monotonicity
    • Penot J.-P. The relevance of convex analysis for the study of monotonicity. Nonlinear Analysis: Theory, Methods & Applications 58 7-8 (2004) 855-871
    • (2004) Nonlinear Analysis: Theory, Methods & Applications , vol.58 , Issue.7-8 , pp. 855-871
    • Penot, J.-P.1
  • 18
    • 2342443295 scopus 로고    scopus 로고
    • A representation of maximal monotone operators by closed convex functions and its impact on calculus rules
    • Penot J.-P. A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. Comptes Rendus Mathmatique. Acadmie des Sciences. Paris 338 11 (2004) 853-858
    • (2004) Comptes Rendus Mathmatique. Acadmie des Sciences. Paris , vol.338 , Issue.11 , pp. 853-858
    • Penot, J.-P.1
  • 20
    • 0006554342 scopus 로고    scopus 로고
    • Lecture notes in maximal monotone operators
    • Phelps R.R. Lecture notes in maximal monotone operators. Extracta Mathematicae 12 3 (1997) 193-230
    • (1997) Extracta Mathematicae , vol.12 , Issue.3 , pp. 193-230
    • Phelps, R.R.1
  • 21
    • 84972582929 scopus 로고
    • On the maximal monotonicity of subdiferential mappings
    • Rockafellar R.T. On the maximal monotonicity of subdiferential mappings. Pacific Journal of Mathematics 33 1 (1970) 209-216
    • (1970) Pacific Journal of Mathematics , vol.33 , Issue.1 , pp. 209-216
    • Rockafellar, R.T.1
  • 24
    • 33745936299 scopus 로고    scopus 로고
    • Fenchel duality, Fitzpatrick functions and maximal monotonicity
    • Simons S., and Zǎlinescu C. Fenchel duality, Fitzpatrick functions and maximal monotonicity. Journal of Nonlinear and Convex Analysis 6 1 (2005) 1-22
    • (2005) Journal of Nonlinear and Convex Analysis , vol.6 , Issue.1 , pp. 1-22
    • Simons, S.1    Zǎlinescu, C.2
  • 25
    • 85174220300 scopus 로고    scopus 로고
    • Regular maximal monotone operators and the sum theorem
    • Verona A., and Verona M.E. Regular maximal monotone operators and the sum theorem. Journal of Convex Analysis 7 1 (2000) 115-128
    • (2000) Journal of Convex Analysis , vol.7 , Issue.1 , pp. 115-128
    • Verona, A.1    Verona, M.E.2
  • 26
    • 33745961812 scopus 로고    scopus 로고
    • A new proof of the maximal monotonicity of the sum using the Fitzpatrick function
    • Variational Analysis and Applications. Giannessi F., and Maugeri A. (Eds), Kluwer
    • Zǎlinescu C. A new proof of the maximal monotonicity of the sum using the Fitzpatrick function. In: Giannessi F., and Maugeri A. (Eds). Variational Analysis and Applications. Nonconvex Optimization and its Applications vol. 79 (2005), Kluwer 1159-1172
    • (2005) Nonconvex Optimization and its Applications , vol.79 , pp. 1159-1172
    • Zǎlinescu, C.1
  • 27
    • 33846533684 scopus 로고    scopus 로고
    • A new convexity property of monotone operators
    • Zǎlinescu C. A new convexity property of monotone operators. Journal of Convex Analysis 13 3-4 (2006)
    • (2006) Journal of Convex Analysis , vol.13 , Issue.3-4
    • Zǎlinescu, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.