-
1
-
-
0003851536
-
-
Ph.D. Thesis, Simon Fraser University, Burnaby, Canada, August, available at
-
H. H. Bauschke: Projection Algorithms and Monotone Operators, Ph.D. Thesis, Simon Fraser University, Burnaby, Canada, August 1996; available at http://www.cecm.sfu.ca/preprints/1996pp.html.
-
(1996)
Projection Algorithms and Monotone Operators
-
-
Bauschke, H.H.1
-
2
-
-
0012677529
-
Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators
-
H. H. Bauschke, J. M. Borwein: Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators, Pac. J. Math. 189 (1999) 1-20.
-
(1999)
Pac. J. Math
, vol.189
, pp. 1-20
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
3
-
-
0036034569
-
Maximal monotone operators, convex functions and a special family of enlargements
-
R. S. Burachik, B.. F. Svaiter: Maximal monotone operators, convex functions and a special family of enlargements, Set-Valued Anal. 10 (2002) 297-316.
-
(2002)
Set-Valued Anal
, vol.10
, pp. 297-316
-
-
Burachik, R.S.1
Svaiter, B.F.2
-
4
-
-
21444436092
-
On the Lambert W function
-
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth: On the Lambert W function, Adv. Comput. Math. 5 (1996) 329-359.
-
(1996)
Adv. Comput. Math
, vol.5
, pp. 329-359
-
-
Corless, R.M.1
Gonnet, G.H.2
Hare, D.E.G.3
Jeffrey, D.J.4
Knuth, D.E.5
-
6
-
-
0038231522
-
Representing monotone operators by convex functions
-
Australian National University, Canberra
-
S. Fitzpatrick: Representing monotone operators by convex functions, in: Functional Analysis and Optimization, Workshop / Miniconference (Canberra 1988), Proc. Cent. Math. Anal. Aust. Natl. Univ. 20, Australian National University, Canberra (1988) 59-65.
-
(1988)
Functional Analysis and Optimization, Workshop / Miniconference (Canberra 1988), Proc. Cent. Math. Anal. Aust. Natl. Univ
, vol.20
, pp. 59-65
-
-
Fitzpatrick, S.1
-
8
-
-
18744404859
-
Monotone operators representable by l.s.c. convex functions
-
J.-E. Martfnez-Legaz, B. F. Svaiter: Monotone operators representable by l.s.c. convex functions, Set-Valued Anal. 13 (2005) 21-46.
-
(2005)
Set-Valued Anal
, vol.13
, pp. 21-46
-
-
Martfnez-Legaz, J.-E.1
Svaiter, B.F.2
-
9
-
-
0038570235
-
A convex representation of maximal monotone operators
-
J.-E. Martínez-Legaz, M. Théra: A convex representation of maximal monotone operators, J. Nonlinear Convex Anal. 2 (2001) 243-247.
-
(2001)
J. Nonlinear Convex Anal
, vol.2
, pp. 243-247
-
-
Martínez-Legaz, J.-E.1
Théra, M.2
-
10
-
-
33846471067
-
-
M. Sc. Thesis, University of Guelph, Ontario, Canada, August
-
D. A. McLaren: Notes on the Fitzpatrick Function, M. Sc. Thesis, University of Guelph, Ontario, Canada, August 2005.
-
(2005)
Notes on the Fitzpatrick Function
-
-
McLaren, D.A.1
-
11
-
-
0000276924
-
Proximité et dualité dans un espace hilbertien
-
J.-J. Moreau: Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. Fr. 93 (1965) 273-299.
-
(1965)
Bull. Soc. Math. Fr
, vol.93
, pp. 273-299
-
-
Moreau, J.-J.1
-
12
-
-
84972582929
-
On the maximal monotonicity of subdifferential mappings
-
R. T. Rockafellar: On the maximal monotonicity of subdifferential mappings, Pac. J. Math. 33 (1970) 209-216.
-
(1970)
Pac. J. Math
, vol.33
, pp. 209-216
-
-
Rockafellar, R.T.1
-
13
-
-
0004267646
-
-
Princeton University Press, Princeton
-
R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
15
-
-
84971790885
-
Subdifferentials are locally maximal monotone
-
S. Simons: Subdifferentials are locally maximal monotone, Bull. Aust. Math. Soc. 47 (1993) 465-471.
-
(1993)
Bull. Aust. Math. Soc
, vol.47
, pp. 465-471
-
-
Simons, S.1
-
16
-
-
0003337138
-
Minimax and Monotonicity
-
Springer, Berlin
-
S. Simons: Minimax and Monotonicity, Lecture Notes in Mathematics 1693, Springer, Berlin (1998).
-
(1998)
Lecture Notes in Mathematics
, vol.1693
-
-
Simons, S.1
-
17
-
-
33846558939
-
The Fitzpatrick function and the range of a sum
-
preprint
-
S. Simons: The Fitzpatrick function and the range of a sum, preprint (2005).
-
(2005)
-
-
Simons, S.1
-
18
-
-
5644292074
-
A new proof for Rockafellar's characterization of maximal monotone operators
-
S. Simons, C. Zǎlinescu: A new proof for Rockafellar's characterization of maximal monotone operators, Proc. Amer. Math. Soc. 132 (2004) 2969-2972.
-
(2004)
Proc. Amer. Math. Soc
, vol.132
, pp. 2969-2972
-
-
Simons, S.1
Zǎlinescu, C.2
-
19
-
-
33745936299
-
Fenchel duality, Fitzpatrick functions and maximal monotonicity
-
S. Simons, C. Zǎlinescu: Fenchel duality, Fitzpatrick functions and maximal monotonicity, J. Nonlinear Convex Anal. 6 (2005) 1-22.
-
(2005)
J. Nonlinear Convex Anal
, vol.6
, pp. 1-22
-
-
Simons, S.1
Zǎlinescu, C.2
|