메뉴 건너뛰기




Volumn 13, Issue 3-4, 2006, Pages 499-523

Fitzpatrick functions: Inequalities, examples, and remarks on a problem by S. Fitzpatrick

Author keywords

Convex function; Fenchel conjugate; Fenchel Young inequality; Fitzpatrick function; Monotone operator; Monotone set

Indexed keywords


EID: 33846522955     PISSN: 09446532     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (43)

References (20)
  • 1
    • 0003851536 scopus 로고    scopus 로고
    • Ph.D. Thesis, Simon Fraser University, Burnaby, Canada, August, available at
    • H. H. Bauschke: Projection Algorithms and Monotone Operators, Ph.D. Thesis, Simon Fraser University, Burnaby, Canada, August 1996; available at http://www.cecm.sfu.ca/preprints/1996pp.html.
    • (1996) Projection Algorithms and Monotone Operators
    • Bauschke, H.H.1
  • 2
    • 0012677529 scopus 로고    scopus 로고
    • Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators
    • H. H. Bauschke, J. M. Borwein: Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators, Pac. J. Math. 189 (1999) 1-20.
    • (1999) Pac. J. Math , vol.189 , pp. 1-20
    • Bauschke, H.H.1    Borwein, J.M.2
  • 3
    • 0036034569 scopus 로고    scopus 로고
    • Maximal monotone operators, convex functions and a special family of enlargements
    • R. S. Burachik, B.. F. Svaiter: Maximal monotone operators, convex functions and a special family of enlargements, Set-Valued Anal. 10 (2002) 297-316.
    • (2002) Set-Valued Anal , vol.10 , pp. 297-316
    • Burachik, R.S.1    Svaiter, B.F.2
  • 8
    • 18744404859 scopus 로고    scopus 로고
    • Monotone operators representable by l.s.c. convex functions
    • J.-E. Martfnez-Legaz, B. F. Svaiter: Monotone operators representable by l.s.c. convex functions, Set-Valued Anal. 13 (2005) 21-46.
    • (2005) Set-Valued Anal , vol.13 , pp. 21-46
    • Martfnez-Legaz, J.-E.1    Svaiter, B.F.2
  • 9
    • 0038570235 scopus 로고    scopus 로고
    • A convex representation of maximal monotone operators
    • J.-E. Martínez-Legaz, M. Théra: A convex representation of maximal monotone operators, J. Nonlinear Convex Anal. 2 (2001) 243-247.
    • (2001) J. Nonlinear Convex Anal , vol.2 , pp. 243-247
    • Martínez-Legaz, J.-E.1    Théra, M.2
  • 10
    • 33846471067 scopus 로고    scopus 로고
    • M. Sc. Thesis, University of Guelph, Ontario, Canada, August
    • D. A. McLaren: Notes on the Fitzpatrick Function, M. Sc. Thesis, University of Guelph, Ontario, Canada, August 2005.
    • (2005) Notes on the Fitzpatrick Function
    • McLaren, D.A.1
  • 11
    • 0000276924 scopus 로고
    • Proximité et dualité dans un espace hilbertien
    • J.-J. Moreau: Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. Fr. 93 (1965) 273-299.
    • (1965) Bull. Soc. Math. Fr , vol.93 , pp. 273-299
    • Moreau, J.-J.1
  • 12
    • 84972582929 scopus 로고
    • On the maximal monotonicity of subdifferential mappings
    • R. T. Rockafellar: On the maximal monotonicity of subdifferential mappings, Pac. J. Math. 33 (1970) 209-216.
    • (1970) Pac. J. Math , vol.33 , pp. 209-216
    • Rockafellar, R.T.1
  • 13
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton
    • R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 15
    • 84971790885 scopus 로고
    • Subdifferentials are locally maximal monotone
    • S. Simons: Subdifferentials are locally maximal monotone, Bull. Aust. Math. Soc. 47 (1993) 465-471.
    • (1993) Bull. Aust. Math. Soc , vol.47 , pp. 465-471
    • Simons, S.1
  • 16
    • 0003337138 scopus 로고    scopus 로고
    • Minimax and Monotonicity
    • Springer, Berlin
    • S. Simons: Minimax and Monotonicity, Lecture Notes in Mathematics 1693, Springer, Berlin (1998).
    • (1998) Lecture Notes in Mathematics , vol.1693
    • Simons, S.1
  • 17
    • 33846558939 scopus 로고    scopus 로고
    • The Fitzpatrick function and the range of a sum
    • preprint
    • S. Simons: The Fitzpatrick function and the range of a sum, preprint (2005).
    • (2005)
    • Simons, S.1
  • 18
    • 5644292074 scopus 로고    scopus 로고
    • A new proof for Rockafellar's characterization of maximal monotone operators
    • S. Simons, C. Zǎlinescu: A new proof for Rockafellar's characterization of maximal monotone operators, Proc. Amer. Math. Soc. 132 (2004) 2969-2972.
    • (2004) Proc. Amer. Math. Soc , vol.132 , pp. 2969-2972
    • Simons, S.1    Zǎlinescu, C.2
  • 19
    • 33745936299 scopus 로고    scopus 로고
    • Fenchel duality, Fitzpatrick functions and maximal monotonicity
    • S. Simons, C. Zǎlinescu: Fenchel duality, Fitzpatrick functions and maximal monotonicity, J. Nonlinear Convex Anal. 6 (2005) 1-22.
    • (2005) J. Nonlinear Convex Anal , vol.6 , pp. 1-22
    • Simons, S.1    Zǎlinescu, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.