메뉴 건너뛰기




Volumn 64, Issue 12, 2006, Pages 2787-2804

A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces

Author keywords

Fenchel duality; Regularity condition; Strong conical hull intersection property; Subdifferential sum formula

Indexed keywords

DIFFERENTIATION (CALCULUS); FUNCTIONS; OPTIMIZATION; PROBLEM SOLVING; SET THEORY;

EID: 33645961296     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2005.09.017     Document Type: Article
Times cited : (66)

References (25)
  • 1
    • 0013468395 scopus 로고
    • Duality for the sum of convex functions in general Banach spaces
    • Barroso J.A. (Ed), North Holland, Amsterdam
    • Attouch H., and Brézis H. Duality for the sum of convex functions in general Banach spaces. In: Barroso J.A. (Ed). Aspects of Mathematics and its Applications (1986), North Holland, Amsterdam 125-133
    • (1986) Aspects of Mathematics and its Applications , pp. 125-133
    • Attouch, H.1    Brézis, H.2
  • 2
    • 0033245924 scopus 로고    scopus 로고
    • Proof of a conjecture by Deutsch, Li, and Swetits on duality of optimization problems
    • Bauschke H.H. Proof of a conjecture by Deutsch, Li, and Swetits on duality of optimization problems. J. Optim. Theory Appl. 102 (1999) 697-703
    • (1999) J. Optim. Theory Appl. , vol.102 , pp. 697-703
    • Bauschke, H.H.1
  • 3
    • 0001030731 scopus 로고    scopus 로고
    • Strong conical hull intersection property, bounded linear regularity, Jameson's property ( G ), and error bounds in convex optimization
    • Bauschke H.H., Borwein J.M., and Li W. Strong conical hull intersection property, bounded linear regularity, Jameson's property ( G ), and error bounds in convex optimization. Math. Programming 86 (1999) 135-160
    • (1999) Math. Programming , vol.86 , pp. 135-160
    • Bauschke, H.H.1    Borwein, J.M.2    Li, W.3
  • 4
    • 0026867929 scopus 로고
    • Partially finite convex programming. I. Quasi relative interiors and duality theory
    • Borwein J.M., and Lewis A.S. Partially finite convex programming. I. Quasi relative interiors and duality theory. Math. Programming 57 (1992) 15-48
    • (1992) Math. Programming , vol.57 , pp. 15-48
    • Borwein, J.M.1    Lewis, A.S.2
  • 5
    • 25444474936 scopus 로고    scopus 로고
    • Strong duality for generalized convex optimization problems
    • Boţ R.I., Kassay G., and Wanka G. Strong duality for generalized convex optimization problems. J. Optim. Theory Appl. 127 1 (2005) 45-70
    • (2005) J. Optim. Theory Appl. , vol.127 , Issue.1 , pp. 45-70
    • Boţ, R.I.1    Kassay, G.2    Wanka, G.3
  • 6
    • 33645979439 scopus 로고    scopus 로고
    • R.I. Boţ, G. Wanka, An alternative formulation for a new closed cone constraint qualification, Nonlinear Anal.: Theory, Methods Appl., to appear.
  • 7
    • 18744402742 scopus 로고    scopus 로고
    • Farkas-type results with conjugate functions
    • Boţ R.I., and Wanka G. Farkas-type results with conjugate functions. SIAM J. Optim. 15 2 (2005) 540-554
    • (2005) SIAM J. Optim. , vol.15 , Issue.2 , pp. 540-554
    • Boţ, R.I.1    Wanka, G.2
  • 8
    • 23744457391 scopus 로고    scopus 로고
    • A dual condition for the convex subdifferential sum formula with applications
    • Burachik R.S., and Jeyakumar V. A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12 2 (2005) 279-290
    • (2005) J. Convex Anal. , vol.12 , Issue.2 , pp. 279-290
    • Burachik, R.S.1    Jeyakumar, V.2
  • 9
    • 20144382882 scopus 로고    scopus 로고
    • A simpler closure condition for the normal cone intersection formula
    • Burachik R.S., and Jeyakumar V. A simpler closure condition for the normal cone intersection formula. Proc. Amer. Math. Soc. 133 6 (2005) 1741-1748
    • (2005) Proc. Amer. Math. Soc. , vol.133 , Issue.6 , pp. 1741-1748
    • Burachik, R.S.1    Jeyakumar, V.2
  • 10
    • 0033245917 scopus 로고    scopus 로고
    • Fenchel duality and the strong conical hull intersection property
    • Deutsch F., Li W., and Swetits J. Fenchel duality and the strong conical hull intersection property. J. Optim. Theory Appl. 102 (1999) 681-695
    • (1999) J. Optim. Theory Appl. , vol.102 , pp. 681-695
    • Deutsch, F.1    Li, W.2    Swetits, J.3
  • 11
    • 0001669049 scopus 로고    scopus 로고
    • A dual approach to constrained interpolation from a convex subset of Hilbert space
    • Deutsch F., Li W., and Ward J.D. A dual approach to constrained interpolation from a convex subset of Hilbert space. J. Approximation Theory 90 (1997) 385-414
    • (1997) J. Approximation Theory , vol.90 , pp. 385-414
    • Deutsch, F.1    Li, W.2    Ward, J.D.3
  • 12
    • 0033266805 scopus 로고    scopus 로고
    • Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property
    • Deutsch F., Li W., and Ward J.D. Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property. SIAM J. Optim. 10 (1999) 252-268
    • (1999) SIAM J. Optim. , vol.10 , pp. 252-268
    • Deutsch, F.1    Li, W.2    Ward, J.D.3
  • 14
    • 25444519994 scopus 로고    scopus 로고
    • The conjugates, compositions and marginals of convex functions
    • Fitzpatrick S.P., and Simons S. The conjugates, compositions and marginals of convex functions. J. Convex Anal. 8 (2001) 423-446
    • (2001) J. Convex Anal. , vol.8 , pp. 423-446
    • Fitzpatrick, S.P.1    Simons, S.2
  • 15
    • 0025462417 scopus 로고
    • A comparison of constraint qualifications in infinite-dimensional convex programming
    • Gowda M.S., and Teboulle M. A comparison of constraint qualifications in infinite-dimensional convex programming. SIAM J. Control Optim. 28 (1990) 925-935
    • (1990) SIAM J. Control Optim. , vol.28 , pp. 925-935
    • Gowda, M.S.1    Teboulle, M.2
  • 17
    • 0026867587 scopus 로고
    • Generalizations of Slater's constraint qualification for infinite convex programs
    • Jeyakumar V., and Wolkowicz H. Generalizations of Slater's constraint qualification for infinite convex programs. Math. Programming 57 (1992) 85-102
    • (1992) Math. Programming , vol.57 , pp. 85-102
    • Jeyakumar, V.1    Wolkowicz, H.2
  • 18
    • 0242365790 scopus 로고    scopus 로고
    • Fenchel duality in infinite-dimensional setting and its applications
    • Ng K.F., and Song W. Fenchel duality in infinite-dimensional setting and its applications. Nonlinear Anal. 25 (2003) 845-858
    • (2003) Nonlinear Anal. , vol.25 , pp. 845-858
    • Ng, K.F.1    Song, W.2
  • 19
    • 84972539430 scopus 로고
    • Extension of Fenchel's duality theorem for convex functions
    • Rockafellar R.T. Extension of Fenchel's duality theorem for convex functions. Duke Math. J. 33 (1966) 81-89
    • (1966) Duke Math. J. , vol.33 , pp. 81-89
    • Rockafellar, R.T.1
  • 21
    • 27244448908 scopus 로고
    • The Fenchel duality theorem in Fréchet spaces
    • Rodrigues B. The Fenchel duality theorem in Fréchet spaces. Optimization 21 (1990) 13-22
    • (1990) Optimization , vol.21 , pp. 13-22
    • Rodrigues, B.1
  • 22
    • 0011279317 scopus 로고
    • Conjugate functions and subdifferentials in nonnormed situations for operators with complete graphs
    • Rodrigues B., and Simons S. Conjugate functions and subdifferentials in nonnormed situations for operators with complete graphs. Nonlinear Anal. 12 (1988) 1069-1078
    • (1988) Nonlinear Anal. , vol.12 , pp. 1069-1078
    • Rodrigues, B.1    Simons, S.2
  • 23
    • 0009618074 scopus 로고    scopus 로고
    • The operation of infimal convolution
    • Strömberg T. The operation of infimal convolution. Diss. Math. 352 (1996)
    • (1996) Diss. Math. , vol.352
    • Strömberg, T.1
  • 24
    • 4243384962 scopus 로고    scopus 로고
    • A comparison of constraint qualifications in infinite-dimensional convex programming revisited
    • Zãlinescu C. A comparison of constraint qualifications in infinite-dimensional convex programming revisited. J. Aust. Math. Soc., Ser. B 40 (1999) 353-378
    • (1999) J. Aust. Math. Soc., Ser. B , vol.40 , pp. 353-378
    • Zãlinescu, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.