메뉴 건너뛰기




Volumn 17, Issue 4, 2006, Pages 1239-1252

Maximal monotonicity for the precomposition with a linear operator

Author keywords

Br zis Haraux type approximation; Fitzpatrick function; Maximal monotone operator; Subdifferential

Indexed keywords

APPROXIMATION THEORY; BANACH SPACES; CONSTRAINT THEORY; FUNCTION EVALUATION; MATHEMATICAL MODELS;

EID: 36248962713     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/050641491     Document Type: Article
Times cited : (28)

References (25)
  • 1
    • 33749528052 scopus 로고    scopus 로고
    • Maximal monotonicity via convex analysis
    • J. M. BORWEIN, Maximal monotonicity via convex analysis, J. Convex Anal., 13 (2006), pp. 561-586.
    • (2006) J. Convex Anal , vol.13 , pp. 561-586
    • BORWEIN, J.M.1
  • 2
    • 33645961296 scopus 로고    scopus 로고
    • A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces
    • R. I. BOŢ AND G. WANKA, A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces, Nonlinear Anal., 64 (2006), pp. 2787-2804.
    • (2006) Nonlinear Anal , vol.64 , pp. 2787-2804
    • BOŢ, R.I.1    WANKA, G.2
  • 3
    • 34250511959 scopus 로고
    • Nonlinear maximal monotone operators in Banach space
    • F. E. BROWDER, Nonlinear maximal monotone operators in Banach space, Math. Ann., 175 (1968), pp. 89-113.
    • (1968) Math. Ann , vol.175 , pp. 89-113
    • BROWDER, F.E.1
  • 4
    • 23744457391 scopus 로고    scopus 로고
    • A dual condition for the convex subdifferential sum formula with applications
    • R. S. BURACHIK AND V. JEYAKUMAR, A dual condition for the convex subdifferential sum formula with applications, J. Convex Anal., 12 (2005), pp. 279-290.
    • (2005) J. Convex Anal , vol.12 , pp. 279-290
    • BURACHIK, R.S.1    JEYAKUMAR, V.2
  • 5
    • 0042745499 scopus 로고    scopus 로고
    • Maximal monotonicity, conjugation and the duality product
    • R. S. BURACHIK AND B. F. SVAITER, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131 (2003), pp. 2379-2383.
    • (2003) Proc. Amer. Math. Soc , vol.131 , pp. 2379-2383
    • BURACHIK, R.S.1    SVAITER, B.F.2
  • 6
    • 0006562511 scopus 로고    scopus 로고
    • On the sum of monotone operators
    • L.-J. CHU, On the sum of monotone operators, Michigan Math. J., 43 (1996), pp. 273-289.
    • (1996) Michigan Math. J , vol.43 , pp. 273-289
    • CHU, L.-J.1
  • 8
    • 25444519994 scopus 로고    scopus 로고
    • The conjugates, compositions and marginals of convex functions
    • S. P. FITZPATRICK AND S. SIMONS, The conjugates, compositions and marginals of convex functions, J. Convex Anal., 8 (2001), pp. 423-446.
    • (2001) J. Convex Anal , vol.8 , pp. 423-446
    • FITZPATRICK, S.P.1    SIMONS, S.2
  • 9
    • 33846497376 scopus 로고    scopus 로고
    • Extended sums and extended compositions of monotone operators
    • Y. GARCÍA, M. LASSONDE, AND J. P. REVALSKI, Extended sums and extended compositions of monotone operators, J. Convex Anal., 13 (2006), pp. 721-738.
    • (2006) J. Convex Anal , vol.13 , pp. 721-738
    • GARCÍA, Y.1    LASSONDE, M.2    REVALSKI, J.P.3
  • 10
    • 0001763991 scopus 로고
    • Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs
    • J.-P. GOSSEZ, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl., 34 (1971), pp. 371-395.
    • (1971) J. Math. Anal. Appl , vol.34 , pp. 371-395
    • GOSSEZ, J.-P.1
  • 11
    • 0001807671 scopus 로고
    • ε-subdifferential calculus
    • Notes in Math. 57, P. Aubin and R. B. Vinter, eds, Pitman, Boston
    • J.-B. HIRIART-URRUTY, ε-subdifferential calculus, in Convex Analysis and Optimization (London, 1980), Res. Notes in Math. 57, P. Aubin and R. B. Vinter, eds., Pitman, Boston, 1982, pp. 43-92.
    • (1982) Convex Analysis and Optimization (London, 1980), Res , pp. 43-92
    • HIRIART-URRUTY, J.-B.1
  • 12
    • 36248953980 scopus 로고    scopus 로고
    • J. E. MARTÍNEZ-LEGAZ AND M. THÉ RA, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal., 2 (2004), pp. 243-247.
    • J. E. MARTÍNEZ-LEGAZ AND M. THÉ RA, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal., 2 (2004), pp. 243-247.
  • 13
    • 0034403146 scopus 로고    scopus 로고
    • Dualization of generalized equations of maximal monotone type
    • T. PENNANEN, Dualization of generalized equations of maximal monotone type, SIAM J. Optim., 10 (2000), pp. 809-835.
    • (2000) SIAM J. Optim , vol.10 , pp. 809-835
    • PENNANEN, T.1
  • 14
    • 0012339960 scopus 로고    scopus 로고
    • On the range of monotone composite mappings
    • T. PENNANEN, On the range of monotone composite mappings, J. Nonlinear Convex Anal., 2 (2001), pp. 193-202.
    • (2001) J. Nonlinear Convex Anal , vol.2 , pp. 193-202
    • PENNANEN, T.1
  • 15
    • 4243129234 scopus 로고    scopus 로고
    • The relevance of convex analysis for the study of monotonicity
    • J.-P. PENOT, The relevance of convex analysis for the study of monotonicity, Nonlinear Anal., 58 (2004), pp. 855-871.
    • (2004) Nonlinear Anal , vol.58 , pp. 855-871
    • PENOT, J.-P.1
  • 16
    • 33745965189 scopus 로고    scopus 로고
    • Some problems about the representation of monotone operators by convex functions
    • J.-P. PENOT AND C. ZǍLINESCU, Some problems about the representation of monotone operators by convex functions, ANZIAM J., 47 (2005), pp. 1-20.
    • (2005) ANZIAM J , vol.47 , pp. 1-20
    • PENOT, J.-P.1    ZǍLINESCU, C.2
  • 17
    • 0006554342 scopus 로고    scopus 로고
    • Lectures on maximal monotone operators
    • R. R. PHELPS, Lectures on maximal monotone operators, Extraeta Math., 12 (1997), pp. 193-230.
    • (1997) Extraeta Math , vol.12 , pp. 193-230
    • PHELPS, R.R.1
  • 18
    • 26444541287 scopus 로고    scopus 로고
    • On the range of the sum of monotone operators in general Banach spaces
    • H. RIAHI, On the range of the sum of monotone operators in general Banach spaces, Proc. Amer. Math. Soc., 124 (1996), pp. 3333-3338.
    • (1996) Proc. Amer. Math. Soc , vol.124 , pp. 3333-3338
    • RIAHI, H.1
  • 19
    • 84972582929 scopus 로고
    • On the maximal monotonicity of subdifferential mappings
    • R. T. ROCKAFELLAR, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33 (1970), pp. 209-216.
    • (1970) Pacific J. Math , vol.33 , pp. 209-216
    • ROCKAFELLAR, R.T.1
  • 20
    • 84966211401 scopus 로고
    • On the maximality of sums of nonlinear monotone operators
    • R. T. ROCKAFELLAR, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149 (1970), pp. 75-88.
    • (1970) Trans. Amer. Math. Soc , vol.149 , pp. 75-88
    • ROCKAFELLAR, R.T.1
  • 22
    • 0030123873 scopus 로고    scopus 로고
    • The range of a monotone operator
    • S. SIMONS, The range of a monotone operator, J. Math. Anal. Appl., 199 (1996), pp. 176-201.
    • (1996) J. Math. Anal. Appl , vol.199 , pp. 176-201
    • SIMONS, S.1
  • 23
    • 33745936299 scopus 로고    scopus 로고
    • Fenchel duality, Fitzpatrick functions and maximal monotonicity
    • S. SIMONS AND C. ZǍLINESCU, Fenchel duality, Fitzpatrick functions and maximal monotonicity, J. Nonlinear Convex Anal., 6 (2004), pp. 1-22.
    • (2004) J. Nonlinear Convex Anal , vol.6 , pp. 1-22
    • SIMONS, S.1    ZǍLINESCU, C.2
  • 24
    • 36249032023 scopus 로고    scopus 로고
    • C. ZǍLINESCU, A new proof of the maximal monotonicity of the sum using the Fitzpatrick function, in Variational Analysis and Applications, Nonconvex Optim. Appl. 79, F. Giannessi and A. Maugeri, eds., Springer-Verlag, New York, 2005, pp. 1159-1172.
    • C. ZǍLINESCU, A new proof of the maximal monotonicity of the sum using the Fitzpatrick function, in Variational Analysis and Applications, Nonconvex Optim. Appl. 79, F. Giannessi and A. Maugeri, eds., Springer-Verlag, New York, 2005, pp. 1159-1172.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.