-
1
-
-
34250870855
-
-
G. K. Mittapalli, K. R. Reddy, H. Xiong, O. Munoz, B. Han, F. De Riccardis, R. Krishnamurthy, A. Eschenmoser, Angew. Chem. 2007, 119, 2522;
-
(2007)
Angew. Chem
, vol.119
, pp. 2522
-
-
Mittapalli, G.K.1
Reddy, K.R.2
Xiong, H.3
Munoz, O.4
Han, B.5
De Riccardis, F.6
Krishnamurthy, R.7
Eschenmoser, A.8
-
2
-
-
34250878397
-
-
Angew. Chem. Int. Ed. 2007, 46, 2470.
-
(2007)
Chem. Int. Ed
, vol.46
, pp. 2470
-
-
Angew1
-
5
-
-
0014202998
-
-
c) R. A. Sanchez, J. P. Ferris, L. E. Orgel, J. Mol. Biol. 1967, 30, 223;
-
(1967)
J. Mol. Biol
, vol.30
, pp. 223
-
-
Sanchez, R.A.1
Ferris, J.P.2
Orgel, L.E.3
-
6
-
-
0032770570
-
-
d) M. Levy, S. L. Miller, J. Oro, J. Mol. Evol. 1999, 49, 165;
-
(1999)
J. Mol. Evol
, vol.49
, pp. 165
-
-
Levy, M.1
Miller, S.L.2
Oro, J.3
-
7
-
-
0003684283
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
e) S. L. Miller, L. E. Orgel, The Origins of Life on the Earth, Prentice-Hall, Englewood Cliffs, NJ, 1974.
-
(1974)
The Origins of Life on the Earth
-
-
Miller, S.L.1
Orgel, L.E.2
-
10
-
-
0036591543
-
-
c) S. Miyakawa, H. J. Cleaves, S. L. Miller, Origins Life Evol. Biosphere 2002, 32, 209.
-
(2002)
Origins Life Evol. Biosphere
, vol.32
, pp. 209
-
-
Miyakawa, S.1
Cleaves, H.J.2
Miller, S.L.3
-
11
-
-
0017529509
-
-
a) J. P. Ferris, P. C. Joshi, J. G. Lawless, Biosystems 1977, 9, 81;
-
(1977)
Biosystems
, vol.9
, pp. 81
-
-
Ferris, J.P.1
Joshi, P.C.2
Lawless, J.G.3
-
12
-
-
0018123703
-
-
b) J. P. Ferris, P. C. Joshi, E. H. Edelson, J. G. Lawless, J. Mol. Evol. 1978, 11, 293.
-
(1978)
J. Mol. Evol
, vol.11
, pp. 293
-
-
Ferris, J.P.1
Joshi, P.C.2
Edelson, E.H.3
Lawless, J.G.4
-
13
-
-
0014413584
-
-
For alternative (potentially prebiotic) formation of canonical pyrimidine, see, for example: a
-
For alternative (potentially prebiotic) formation of canonical pyrimidine, see, for example: a) J. P. Ferris, R. A. Sanchez, L. E. Orgel, J. Mol. Biol. 1968, 33, 693;
-
(1968)
J. Mol. Biol
, vol.33
, pp. 693
-
-
Ferris, J.P.1
Sanchez, R.A.2
Orgel, L.E.3
-
15
-
-
0028965139
-
-
For 5-aminocytosine, see: a
-
For 5-aminocytosine, see: a) G. Andresen, L.-L. Gundersen, M. Lundmark, F. Rise, S. Sundell, Tetrahedron 1995, 51, 3655;
-
(1995)
Tetrahedron
, vol.51
, pp. 3655
-
-
Andresen, G.1
Gundersen, L.-L.2
Lundmark, M.3
Rise, F.4
Sundell, S.5
-
18
-
-
34250886493
-
-
For 5-aminoisocytosine, see: d
-
For 5-aminoisocytosine, see: d) T. B. Johnson, C. O. Johns, Am. Chem. J. 1905, 34, 554;
-
(1905)
Am. Chem. J
, vol.34
, pp. 554
-
-
Johnson, T.B.1
Johns, C.O.2
-
20
-
-
34250846632
-
-
For 2,4,5-triaminopyrimidine, see f, 109. 5-Aminouracil is commercially available
-
For 2,4,5-triaminopyrimidine, see f) D. J. Brown, J. Appl. Chem. 1957, 7, 109. 5-Aminouracil is commercially available.
-
(1957)
J. Appl. Chem
, vol.7
-
-
Brown, D.J.1
-
21
-
-
0024233016
-
-
a) J.-W. Chern, D. S. Wise, W. Butler, L. B. Townsend, J. Org. Chem. 1988, 53, 5622;
-
(1988)
J. Org. Chem
, vol.53
, pp. 5622
-
-
Chern, J.-W.1
Wise, D.S.2
Butler, W.3
Townsend, L.B.4
-
22
-
-
0028217794
-
-
b) M. A. Sofan, A. E.-S. Abdel-Megied, M. B. Pedersen, E. B. Pedersen, C. Nielsen, Synthesis 1994, 516;
-
(1994)
Synthesis
, pp. 516
-
-
Sofan, M.A.1
Abdel-Megied, A.E.-S.2
Pedersen, M.B.3
Pedersen, E.B.4
Nielsen, C.5
-
23
-
-
0031239572
-
-
c) E. Ferrer, M. Wiersma, B. Kazimierczak, C. W. Müller, R. Eritja, Bioconjugate Chem. 1997, 8, 757;
-
(1997)
Bioconjugate Chem
, vol.8
, pp. 757
-
-
Ferrer, E.1
Wiersma, M.2
Kazimierczak, B.3
Müller, C.W.4
Eritja, R.5
-
25
-
-
0038341704
-
-
e) M. J. Storek, A. Suciu, G. L. Verdine, Org. Lett. 2002, 4, 3867.
-
(2002)
Org. Lett
, vol.4
, pp. 3867
-
-
Storek, M.J.1
Suciu, A.2
Verdine, G.L.3
-
26
-
-
0025008851
-
-
For an early constitutional analysis of alternative nucleobase pairs, see: a
-
For an early constitutional analysis of alternative nucleobase pairs, see: a) J. A. Piccirilli, T. Krauch, S. E. Moroney, S. E. Benner, Nature 1990, 343, 33;
-
(1990)
Nature
, vol.343
, pp. 33
-
-
Piccirilli, J.A.1
Krauch, T.2
Moroney, S.E.3
Benner, S.E.4
-
28
-
-
0346731227
-
-
T. Otzen, E. G. Wempe, B. Kunz, R. Bartels, G. L. -Yvetot, W. Hansel, K.-J. Schaper, J. K. Seydel, J. Med. Chem. 2004, 47, 240;
-
a) T. Otzen, E. G. Wempe, B. Kunz, R. Bartels, G. L. -Yvetot, W. Hansel, K.-J. Schaper, J. K. Seydel, J. Med. Chem. 2004, 47, 240;
-
-
-
-
30
-
-
0021964986
-
-
D. J. Brown, K. Mori, Aust. J. Chem. 1985, 38, 467. An amino group in position 5 of a pyrimidine is, together with the NH group in position 1, part of a vinylogous hydrazine system, whereas amino groups at position 2 or 4 are part of a guanidine or an amidine system, respectively.
-
c) D. J. Brown, K. Mori, Aust. J. Chem. 1985, 38, 467. An amino group in position 5 of a pyrimidine is, together with the NH group in position 1, part of a vinylogous hydrazine system, whereas amino groups at position 2 or 4 are part of a guanidine or an amidine system, respectively.
-
-
-
-
31
-
-
0031030829
-
-
a) P. Wipf, A. Cunningham, R. L. Rice, J. S. Lazo, Bioorg. Med. Chem. 1997, 5, 165.
-
(1997)
Bioorg. Med. Chem
, vol.5
, pp. 165
-
-
Wipf, P.1
Cunningham, A.2
Rice, R.L.3
Lazo, J.S.4
-
32
-
-
0034742736
-
-
The procedure used in the preparation for the D enantiomer was used: K. L. Webster, A. B. Maude, M. E. O'Donnell, A. P. Mehorotra, D. Gani, J. Chem. Soc. Perkin Trans. 1 2001, 1673.
-
b) The procedure used in the preparation for the D enantiomer was used: K. L. Webster, A. B. Maude, M. E. O'Donnell, A. P. Mehorotra, D. Gani, J. Chem. Soc. Perkin Trans. 1 2001, 1673.
-
-
-
-
33
-
-
0024287092
-
-
S. Nakabayashi, C. D. Warren, R. W. Jeanloz, Carbohydr. Res. 1988, 174, 279.
-
(1988)
Carbohydr. Res
, vol.174
, pp. 279
-
-
Nakabayashi, S.1
Warren, C.D.2
Jeanloz, R.W.3
-
34
-
-
34250801049
-
-
[13]
-
[13]
-
-
-
-
35
-
-
34250898742
-
-
K.-U. Schoening, P. Scholtz, X. Wu, S. Guntha, G. Delgado, R. Krishnamurthy, A. Eschenmoser, Helv. Chim. Acta 2003, 86, 1259.
-
(2003)
Helv. Chim. Acta
, vol.86
, pp. 1259
-
-
Schoening, K.-U.1
Scholtz, P.2
Wu, X.3
Guntha, S.4
Delgado, G.5
Krishnamurthy, R.6
Eschenmoser, A.7
-
36
-
-
34250903166
-
-
The similarity between the UV spectra of cytosine (λmax, 267 nm, ε, 6100)[15a] and 1-methyl-cytosine (λmax, 273 nm, ε, 8100)[15a] or 1-ribofuranosylcytosine (λmax, 270 nm, ε, 8800, 15b] closely corresponds to the similarity between the UV spectra of the 5-aminocytosine (λmax, 292 nm, ε, 3800, 15c] and of its 1-ribofuranosyl derivative (λmax, 298 nm, ε, 6200)[15b] in buffer solution pH 7. This indicates that the 5-aminocytosine nucleus prefers the position 1 NH tautomer in aqueous solution. In the 5-aminoisocytosine series we observe UV spectra of quite different structure for the free base 2 (λmax, 287 nm, ε, 4100; 240 nm (shoulder, ε, 6400; ε220nm, 10,500) and its N3 methyl derivative λmax, 308 and 242 nm, ε, 7300 and 6800;
-
220nm = 5200) relative to the maxima of the 3-methylisocytosine derivative. The spectrum is, however, of the same type as for the free N-3-methylated base. These findings point to the conclusion that 5-aminoisocytosine disfavors its NH(3)-tautomer in aqueous solution. The conclusion remains tentative as the necessary UV comparison with the 1-methylisocytosine derivative is lacking.
-
-
-
-
40
-
-
0000584539
-
-
See, for example
-
See, for example, R. Krishnamurthy, S. Pitsch, M. Minton, C. Miculka, N. Windhab, A. Eschenmoser, Angew. Chem. 1996, 108, 1619;
-
(1996)
Angew. Chem
, vol.108
, pp. 1619
-
-
Krishnamurthy, R.1
Pitsch, S.2
Minton, M.3
Miculka, C.4
Windhab, N.5
Eschenmoser, A.6
-
42
-
-
0000242653
-
-
a) G. Groebke, J. Hunziker, W. Fraser, Ling Peng, U. Diederichsen, K. Zimmermann, A. Holzner, C. Leumann, A. Eschenmoser, Helv. Chim. Acta 1998, 81, 375;
-
(1998)
Helv. Chim. Acta
, vol.81
, pp. 375
-
-
Groebke, G.1
Hunziker, J.2
Fraser, W.3
Peng, L.4
Diederichsen, U.5
Zimmermann, K.6
Holzner, A.7
Leumann, C.8
Eschenmoser, A.9
-
43
-
-
0031004327
-
-
C. Roberts, R. Bandaru, C. Switzer, J. Am. Chem. Soc. 1997, 119, 4640. In both the homo-DNA and the pyranosyl-RNA series, it has been shown that isoguanine can form strong Watson - Crick pairs with guanine. This demonstrates the capability of the isoguanine nucleus to act in base pairing as the position 3 NH tautomer (see references [16] and [17a]). It should be noted, however, that the generation of such a guanine - isoguanine pair from guanine and the isoguanine position 3 NH tautomer might well be indistinguishable from that of an identical pair from guanine and the phenolic isoguanine tautomer (see the discussion on pages 438-444 in reference [17a]).
-
b) C. Roberts, R. Bandaru, C. Switzer, J. Am. Chem. Soc. 1997, 119, 4640. In both the homo-DNA and the pyranosyl-RNA series, it has been shown that isoguanine can form strong Watson - Crick pairs with guanine. This demonstrates the capability of the isoguanine nucleus to act in base pairing as the position 3 NH tautomer (see references [16] and [17a]). It should be noted, however, that the generation of such a guanine - isoguanine pair from guanine and the isoguanine position 3 NH tautomer might well be indistinguishable from that of an identical pair from guanine and the phenolic isoguanine tautomer (see the discussion on pages 438-444 in reference [17a]).
-
-
-
-
44
-
-
34250884757
-
-
We surmise that, in this guanine-cytosine-like pairing interaction, it is the 2-amino-4-oxo member that takes the role of the guanine-analogue; the argument being that, if the 2-oxo-4-amino member would fulfill that role, it would have to do so as its position 3 NH tautomer, in which the location of two amino functions at a common C-C double bond should be electronically unfavorable (local four-center, six-electron system).
-
We surmise that, in this guanine-cytosine-like pairing interaction, it is the 2-amino-4-oxo member that takes the role of the guanine-analogue; the argument being that, if the 2-oxo-4-amino member would fulfill that role, it would have to do so as its position 3 NH tautomer, in which the location of two amino functions at a common C-C double bond should be electronically unfavorable (local four-center, six-electron system).
-
-
-
-
45
-
-
34250833505
-
-
J. Jonas, J. Gut, Collect. Czech. Chem. Commun. 1962, 27, 716.
-
J. Jonas, J. Gut, Collect. Czech. Chem. Commun. 1962, 27, 716.
-
-
-
-
46
-
-
0001800948
-
-
K. Nakanishi, N. Suzuki, F. Yamakazi, Bull. Chem. Soc. Jpn. 1961, 34, 53.
-
(1961)
Bull. Chem. Soc. Jpn
, vol.34
, pp. 53
-
-
Nakanishi, K.1
Suzuki, N.2
Yamakazi, F.3
-
48
-
-
34250875289
-
-
Spectroscopically determined from the pH-dependent UV spectrum. For details, see the Supporting Information of reference [1].
-
Supporting Information of reference
, vol.1
-
-
-
49
-
-
0003836971
-
-
Oxford, Clarendon
-
R. M. C. Dawson, D. C. Elliot, W. H. Elliot, K. M. Jones, Data for Biochemical Research, Oxford, Clarendon, 1959.
-
(1959)
Data for Biochemical Research
-
-
Dawson, R.M.C.1
Elliot, D.C.2
Elliot, W.H.3
Jones, K.M.4
-
50
-
-
0002453698
-
-
For a review of factors that determine base-pairing strength in nonaqueous medium, see
-
For a review of factors that determine base-pairing strength in nonaqueous medium, see: S. C. Zimmermann, P. S. Corbin, Struct. Bonding (Berlin) 2000, 96, 63.
-
(2000)
Struct. Bonding (Berlin)
, vol.96
, pp. 63
-
-
Zimmermann, S.C.1
Corbin, P.S.2
-
51
-
-
34250880360
-
-
a values and the formation of short hydrogen bonds in the solid state, see: T. Steiner, I. Majerz, C. C. Wilson, Angew. Chem. 2001, 113, 2728;
-
a values and the formation of short hydrogen bonds in the solid state, see: T. Steiner, I. Majerz, C. C. Wilson, Angew. Chem. 2001, 113, 2728;
-
-
-
-
52
-
-
0035898337
-
-
a match) has recently been proposed to explain the fact that, as a rule, RNA duplexes have higher melting temperatures than corresponding DNA duplexes;
-
a match") has recently been proposed to explain the fact that, as a rule, RNA duplexes have higher melting temperatures than corresponding DNA duplexes;
-
-
-
-
53
-
-
1542286635
-
-
see:, and references therein
-
see: P. Acharya, P. Cheruku, S. Chatterjee, S. Acharya, J. Chattopadhyaya, J. Am. Chem. Soc. 2004, 126, 2862, and references therein.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 2862
-
-
Acharya, P.1
Cheruku, P.2
Chatterjee, S.3
Acharya, S.4
Chattopadhyaya, J.5
-
55
-
-
0025025654
-
-
Studies along these lines are being carried out in collaboration with J. Rebek (TSRI). See also in this context: K. S. Jeong, T. Tjivikua, J. Rebek, Jr., J. Am. Chem. Soc. 1990, 112, 3215.
-
Studies along these lines are being carried out in collaboration with J. Rebek (TSRI). See also in this context: K. S. Jeong, T. Tjivikua, J. Rebek, Jr., J. Am. Chem. Soc. 1990, 112, 3215.
-
-
-
|